当前监测糖尿病患者血糖水平的标准是连续的葡萄糖监测(CGM)设备,这些设备昂贵且具有并发症的风险,例如用于将CGM传感器连接到皮肤的粘合剂的过敏反应或皮肤刺激。CGM设备也很明显,因此可以作为糖尿病患者的不适疾病标记。为了减轻这些问题,我们开发并测试了一种新颖的深度学习方法,该方法仅通过使用个性化和自我监视学习,能够使用非侵入性预测变量预测血糖水平,而目标变量的数量很少。每周仅使用两次血糖测量,我们的方法(4925.47葡萄糖特异性MSE)的表现优于传统的深度学习,该深度学习用小时测量(5137.80葡萄糖特异性MSE)。在六个实验中,血糖测量相距超过四个小时,我们的方法在没有例外的情况下优于传统的深度学习。我们的发现表明,自我监督,个性化的深度学习可以为CGM设备提供替代方案的途径,而CGM设备的成本较小,无创,因此更容易访问。
主要关键词