尽管所有已知的粒子都带有订单统一(或电气中性)的电荷值,但近年来,具有较小电荷量的基本粒子的模型已引起了很大的兴趣[1-17]。可能会出现这样的毫米颗粒,例如,如果通过光子与新的浅色深色光子的动能混合产生有效电荷,则L⊃= 2 fμνf0μν,其中f0μν是深色光子场强度,而ϵ是一个小小的尺寸参数。这种混合会导致在此新的Uð1Þ0下充电的颗粒,从而获得有效的电荷,q χ¼ϵE 0 = e,其中e 0是uð1Þ0量表耦合,e是标准的电磁耦合[18]。在有效的场理论的背景下,任何值的值在技术上都是自然的。如果标准模型嵌入了大统一理论中,则仅通过携带超负荷和uð1的粒子的循环而产生这种混合。在一环级别,此混合的预期大小由
𝜖 O3 = 𝑆 0P 𝑑𝐵−𝑁𝐹。(5)𝜖 O3 可视为初步评估 LNA 基本性能的定性参考,与接收器性能的潜在优势有关。图 1(a) 和 (b) 中的 LNA 分别显示 𝜖 O3 为 -0.3 dB 和 3.1 dB。这意味着,图 1(a) 中的 LNA 具有负 𝜖 O3(NF 高于增益),可能会损害整体接收器性能,并且从成本效益的角度来看,采用它可能是不合理的,因为这取决于接收器下一阶段的性能,甚至可能导致性能下降和功耗浪费。对于图 1(b) 中的 LNA,𝜖 O3 略微超过 3dB,这可以视为其在接收器中采用的初步定性要求。尽管噪声系数略有增加,但 MT 0 和 𝜖 O3 均支持具有 IIM 的共源共栅放大器对于 MPmCN 的优势。
简介。利用互补的金属 - 氧化物 - 溶剂导体(CMOS)工业的发达过程,硅光子电路,这些电路融合了各种光学组件,包括高效的光栅耦合器,高响应速度 - 速度速度光电探测器,以及优秀的调制器[1-3],现在已广泛使用和使用。但是,缺乏高性能激光是进一步开发硅光子平台的主要瓶颈。直接伴侣III – V半导体是实现实用和紧凑的光源但不容易集成在硅上的有前途的候选者。探索了几种使用应变 - 释放的缓冲层[4-11]的III – V材料的直接键盘,传输印刷和直接整体外观的方法[4-11]来实现这一目标,但都有其局限性。新颖的纳米ridge
摘要:在智能运输中,辅助驾驶取决于来自各种传感器的数据集成,尤其是LiDAR和相机。但是,它们的光学性能会在不利的天气条件下降低,并可能损害车辆安全性。毫米波雷达可以更经济地克服这些问题,并得到了重新评估。尽管如此,由于噪声干扰严重和语义信息有限,开发准确的检测模型是具有挑战性的。为了应对这些实际挑战,本文提出了TC – radar模型,这是一种新颖的方法,该方法协同整合了变压器的优势和卷积神经网络(CNN),以优化智能运输系统中毫米波雷达的传感潜力。这种集成的基本原理在于CNN的互补性质,该性质擅长捕获局部空间特征和变形金刚,这些特征在数据中擅长建模长距离依赖性和数据中的全局上下文。这种混合方法允许对雷达信号的更强大和准确的表示,从而提高了检测性能。我们方法的关键创新是引入交叉注意(CA)模块,该模块有助于网络的编码器和解码器阶段之间的高效和动态信息交换。此CA机制可确保准确捕获和传输关键特征,从而显着提高整体网络性能。此外,该模型还包含密集的信息融合块(DIFB),以通过整合不同的高频局部特征来进一步丰富特征表示。此集成过程确保了关键数据点的彻底合并。在Cruw和Carrada数据集上进行的广泛测试验证了该方法的优势,模型的平均精度(AP)为83.99%,平均相交(MIOU)的平均交点为45.2%,表明了鲁棒的雷达感应功能。
1,2,3部门尼日利亚河口河州立大学电气工程大学。摘要:自由空间传播中有一个自由空间路线损失,这是传播路径,在发射器和接收器之间没有障碍物。这被认为是无线电波信号在自由空间传输过程中的损失。为了构建尽管有潜在问题,可以尽可能有效地发挥作用的通信系统,必须确定路径损失。路径损失也已用于无线调查工具和无线电通信来确定天线的信号强度。鉴于无线设备(包括软件和调查工具)的重要性越来越重要,现在可以全面理解无线电路径丢失的想法是有益的。为了全面了解自由空间传播路径损失及其影响的因素,本文的主要目的是模拟现象。MATLAB软件在此过程中用于生成图形,从而为路径损耗提供清晰易于理解的表示。从低6频率范围中选择了两个频率,另外两个频率来自毫波频率范围,结果表明,随着距离的增加,自由空间路径损失增加,并且频率增加,并且毫米损失较大,但可以通过天线增益来减轻损失,并遵循其他建议。关键字:频率,自由空间传播,自由空间传播路径损失,无线电波传播。
1。rd和al。呼吸剧加热。2021; 43(3):341-348。 doi:1016/j.htct.2020.06.006 2。他施舍。剧型。2020; 99:1505-1 doi:10.10.1007/s0027-020-0404052-Z 3。in:Statsearch出版; 2023。2023年7月31日访问。m和al。J Manag Sec Pharm2020; 26(12)(补充B):S8-S15。招募米切尔。SM Clin Med Oncol2017; 1(1):1001。 6。 in:Statsearch 出版; 2023。 2023年7月17日访问。 JL Dotson,Lebowicz Y. in:Statsearch 出版; 2023。 2022年7月18日访问。 n等。 J Clin Med 2021; 10:1026。 doi:10.390/jcm10051026 9。 Brodsky RA。 血液 2014; 124:2804-2811。 doi:10.1182/Year2014-02-52128 10。 miyata t和al。 n Engel J Med。 1994; 330:249-2 11。 Bessler M和Al。 J. 1994; 13(1):110-1 12。 miyata t和al。 科学。 1993; 259:1318-1 13。 JF和Al。 血。 1992; 79:1400-1403。2017; 1(1):1001。6。in:Statsearch出版; 2023。2023年7月17日访问。JL Dotson,Lebowicz Y.in:Statsearch出版; 2023。2022年7月18日访问。n等。J Clin Med 2021; 10:1026。 doi:10.390/jcm10051026 9。 Brodsky RA。 血液 2014; 124:2804-2811。 doi:10.1182/Year2014-02-52128 10。 miyata t和al。 n Engel J Med。 1994; 330:249-2 11。 Bessler M和Al。 J. 1994; 13(1):110-1 12。 miyata t和al。 科学。 1993; 259:1318-1 13。 JF和Al。 血。 1992; 79:1400-1403。J Clin Med2021; 10:1026。 doi:10.390/jcm10051026 9。Brodsky RA。 血液 2014; 124:2804-2811。 doi:10.1182/Year2014-02-52128 10。 miyata t和al。 n Engel J Med。 1994; 330:249-2 11。 Bessler M和Al。 J. 1994; 13(1):110-1 12。 miyata t和al。 科学。 1993; 259:1318-1 13。 JF和Al。 血。 1992; 79:1400-1403。Brodsky RA。血液2014; 124:2804-2811。 doi:10.1182/Year2014-02-52128 10。 miyata t和al。 n Engel J Med。 1994; 330:249-2 11。 Bessler M和Al。 J. 1994; 13(1):110-1 12。 miyata t和al。 科学。 1993; 259:1318-1 13。 JF和Al。 血。 1992; 79:1400-1403。2014; 124:2804-2811。 doi:10.1182/Year2014-02-52128 10。miyata t和al。n Engel J Med。1994; 330:249-211。Bessler M和Al。J.1994; 13(1):110-112。miyata t和al。科学。1993; 259:1318-113。JF和Al。血。1992; 79:1400-1403。1992; 79:1400-1403。14。J和Al。单元格。1993; 73-711。 15。 Wilcox La和Al。 血液 1991; 78(3):820-8 16。 Medof Me and Al。 Proc Natl Sci Acad A. 1985; 82(9):2980-2 17。 MH等人。 J Clin Invest。 1989; 84:1387-1394。 18。 Davies A和Al。 J扩展。 1989; 170:637-6 19。 m和al。 J Spec Pharm Manag。 2020; 26(12)(补充B):S3-S8 20。 rj和al。 接触Oncol Haematol 2021; 17:84-89。 doi:10.17925/ohr.2021.2.2.84 21。 Parker CJ。 血液学和SOC雌醇教育 2016; 2016(1):208-2 22。 illingworth a和al。 细胞细胞t。 2018; 94-66。 doi:10.1002/cycle.b.21609 23。 Southernland Dr and Al。 细胞细胞t。 2018; 94(1):23-4 doi:10.1002/cycle.b.21610 24。 肥胖的B和Al。 白血病。 2021; 35:323-3231。 doi:10.1038/s41375-021-01190-9 25。 dingli d和al。 剧型。 2023; 102(7):1637-1644。 doi:10.10.1007/s0027-05-05269-4 26。 maninal p al。 印度J仅呼吸蛇出血。 2017; 33(4):453-462。 doi:10.1007/s1288-017-0868-y 27。 Parker C和Al。 血。 2005; 106(12):3699-3 doi:10.1182/Blood-2005-1717。 res螺栓。 2015; 136(2):274-281。1993; 73-711。15。Wilcox La和Al。 血液 1991; 78(3):820-8 16。 Medof Me and Al。 Proc Natl Sci Acad A. 1985; 82(9):2980-2 17。 MH等人。 J Clin Invest。 1989; 84:1387-1394。 18。 Davies A和Al。 J扩展。 1989; 170:637-6 19。 m和al。 J Spec Pharm Manag。 2020; 26(12)(补充B):S3-S8 20。 rj和al。 接触Oncol Haematol 2021; 17:84-89。 doi:10.17925/ohr.2021.2.2.84 21。 Parker CJ。 血液学和SOC雌醇教育 2016; 2016(1):208-2 22。 illingworth a和al。 细胞细胞t。 2018; 94-66。 doi:10.1002/cycle.b.21609 23。 Southernland Dr and Al。 细胞细胞t。 2018; 94(1):23-4 doi:10.1002/cycle.b.21610 24。 肥胖的B和Al。 白血病。 2021; 35:323-3231。 doi:10.1038/s41375-021-01190-9 25。 dingli d和al。 剧型。 2023; 102(7):1637-1644。 doi:10.10.1007/s0027-05-05269-4 26。 maninal p al。 印度J仅呼吸蛇出血。 2017; 33(4):453-462。 doi:10.1007/s1288-017-0868-y 27。 Parker C和Al。 血。 2005; 106(12):3699-3 doi:10.1182/Blood-2005-1717。 res螺栓。 2015; 136(2):274-281。Wilcox La和Al。血液1991; 78(3):820-816。Medof Me and Al。Proc Natl Sci Acad A.1985; 82(9):2980-217。MH等人。J Clin Invest。1989; 84:1387-1394。 18。 Davies A和Al。 J扩展。 1989; 170:637-6 19。 m和al。 J Spec Pharm Manag。 2020; 26(12)(补充B):S3-S8 20。 rj和al。 接触Oncol Haematol 2021; 17:84-89。 doi:10.17925/ohr.2021.2.2.84 21。 Parker CJ。 血液学和SOC雌醇教育 2016; 2016(1):208-2 22。 illingworth a和al。 细胞细胞t。 2018; 94-66。 doi:10.1002/cycle.b.21609 23。 Southernland Dr and Al。 细胞细胞t。 2018; 94(1):23-4 doi:10.1002/cycle.b.21610 24。 肥胖的B和Al。 白血病。 2021; 35:323-3231。 doi:10.1038/s41375-021-01190-9 25。 dingli d和al。 剧型。 2023; 102(7):1637-1644。 doi:10.10.1007/s0027-05-05269-4 26。 maninal p al。 印度J仅呼吸蛇出血。 2017; 33(4):453-462。 doi:10.1007/s1288-017-0868-y 27。 Parker C和Al。 血。 2005; 106(12):3699-3 doi:10.1182/Blood-2005-1717。 res螺栓。 2015; 136(2):274-281。1989; 84:1387-1394。18。Davies A和Al。 J扩展。 1989; 170:637-6 19。 m和al。 J Spec Pharm Manag。 2020; 26(12)(补充B):S3-S8 20。 rj和al。 接触Oncol Haematol 2021; 17:84-89。 doi:10.17925/ohr.2021.2.2.84 21。 Parker CJ。 血液学和SOC雌醇教育 2016; 2016(1):208-2 22。 illingworth a和al。 细胞细胞t。 2018; 94-66。 doi:10.1002/cycle.b.21609 23。 Southernland Dr and Al。 细胞细胞t。 2018; 94(1):23-4 doi:10.1002/cycle.b.21610 24。 肥胖的B和Al。 白血病。 2021; 35:323-3231。 doi:10.1038/s41375-021-01190-9 25。 dingli d和al。 剧型。 2023; 102(7):1637-1644。 doi:10.10.1007/s0027-05-05269-4 26。 maninal p al。 印度J仅呼吸蛇出血。 2017; 33(4):453-462。 doi:10.1007/s1288-017-0868-y 27。 Parker C和Al。 血。 2005; 106(12):3699-3 doi:10.1182/Blood-2005-1717。 res螺栓。 2015; 136(2):274-281。Davies A和Al。J扩展。1989; 170:637-619。m和al。J Spec Pharm Manag。2020; 26(12)(补充B):S3-S820。rj和al。接触Oncol Haematol2021; 17:84-89。 doi:10.17925/ohr.2021.2.2.84 21。Parker CJ。 血液学和SOC雌醇教育 2016; 2016(1):208-2 22。 illingworth a和al。 细胞细胞t。 2018; 94-66。 doi:10.1002/cycle.b.21609 23。 Southernland Dr and Al。 细胞细胞t。 2018; 94(1):23-4 doi:10.1002/cycle.b.21610 24。 肥胖的B和Al。 白血病。 2021; 35:323-3231。 doi:10.1038/s41375-021-01190-9 25。 dingli d和al。 剧型。 2023; 102(7):1637-1644。 doi:10.10.1007/s0027-05-05269-4 26。 maninal p al。 印度J仅呼吸蛇出血。 2017; 33(4):453-462。 doi:10.1007/s1288-017-0868-y 27。 Parker C和Al。 血。 2005; 106(12):3699-3 doi:10.1182/Blood-2005-1717。 res螺栓。 2015; 136(2):274-281。Parker CJ。血液学和SOC雌醇教育2016; 2016(1):208-222。illingworth a和al。细胞细胞t。2018; 94-66。 doi:10.1002/cycle.b.21609 23。Southernland Dr and Al。 细胞细胞t。 2018; 94(1):23-4 doi:10.1002/cycle.b.21610 24。 肥胖的B和Al。 白血病。 2021; 35:323-3231。 doi:10.1038/s41375-021-01190-9 25。 dingli d和al。 剧型。 2023; 102(7):1637-1644。 doi:10.10.1007/s0027-05-05269-4 26。 maninal p al。 印度J仅呼吸蛇出血。 2017; 33(4):453-462。 doi:10.1007/s1288-017-0868-y 27。 Parker C和Al。 血。 2005; 106(12):3699-3 doi:10.1182/Blood-2005-1717。 res螺栓。 2015; 136(2):274-281。Southernland Dr and Al。细胞细胞t。2018; 94(1):23-4 doi:10.1002/cycle.b.21610 24。肥胖的B和Al。白血病。2021; 35:323-3231。 doi:10.1038/s41375-021-01190-9 25。dingli d和al。剧型。2023; 102(7):1637-1644。 doi:10.10.1007/s0027-05-05269-4 26。maninal p al。印度J仅呼吸蛇出血。2017; 33(4):453-462。 doi:10.1007/s1288-017-0868-y 27。 Parker C和Al。 血。 2005; 106(12):3699-3 doi:10.1182/Blood-2005-1717。 res螺栓。 2015; 136(2):274-281。2017; 33(4):453-462。 doi:10.1007/s1288-017-0868-y 27。Parker C和Al。 血。 2005; 106(12):3699-3 doi:10.1182/Blood-2005-1717。 res螺栓。 2015; 136(2):274-281。Parker C和Al。血。2005; 106(12):3699-3 doi:10.1182/Blood-2005-1717。 res螺栓。 2015; 136(2):274-281。2005; 106(12):3699-3 doi:10.1182/Blood-2005-1717。res螺栓。2015; 136(2):274-281。2015; 136(2):274-281。29。Borowitz MJ等。细胞仪B临床细胞症。2010; 78(4):211-230。 doi:10.1002 /cyto.B.20525 30。< /div>Arup实验室。2024年6月5日访问。https://ltd.aruplab.com/tests/pub/2005006 31。生物。2024年6月5日访问。https://www.bioreference.com/physicians/resources/test-directory/?tc = 5564 32。克利夫兰诊所实验室。2024年6月5日访问。https://clevelandcliniclabs.com/high-sensitivity-flow-cytometry-for-paroxysmal-nocturnal-nocturnal-hemoglobinuria/33。CSI实验室。2024年6月5日访问。https://www.csilaboratories.com/flow/pnh-high-sensitivity/34。Dahl-Chase诊断服务。2024年6月5日访问。http:// dahlchase。host4kb.com/article/aa-00231/15/ 35。Dahl-Chase诊断服务。2024年6月5日。hemagogenix。2024年6月5日访问。https://hematogenix.com/technologies/flow-cytometry 37。告知诊断。2024年6月5日访问。https://www.informdx.com/wp- content/uploads/mls-20-0100.4-client-resource-resource-guide.pdf 38。labcorp。2024年6月5日访问。https://oncology.labcorp.com/tests/zzio-295/pnh--评估39。Mayo诊所实验室。 2024年6月5日访问。https://www.mayocliniclabs.com/test-catalog/overview/62139#specimen 40。 Mayo诊所实验室。 2024年6月5日访问。https://www.mayocliniclabs.com/test-catalog/overview/62139#fees-and-codes 41。Mayo诊所实验室。2024年6月5日访问。https://www.mayocliniclabs.com/test-catalog/overview/62139#specimen 40。Mayo诊所实验室。 2024年6月5日访问。https://www.mayocliniclabs.com/test-catalog/overview/62139#fees-and-codes 41。Mayo诊所实验室。2024年6月5日访问。https://www.mayocliniclabs.com/test-catalog/overview/62139#fees-and-codes 41。密歇根州医学实验室。2024年6月5日访问。https://mlabs.umich.edu/tests/pnh-marker-panel 42。分子病理实验室网络。2024年6月5日访问。https://mplnet.com/test-menu/ 43。分子病理实验室网络。2024年6月5日访问。https://www.mplnet.com/cellular-免疫学/44。新基因学。2024年6月5日访问。https://neogenomics.com/test-menu/high-sensitivity-pnh-evaluation 45。俄勒冈州健康与科学大学实验室服务。 2024年6月5日访问。https://www.ohsu.edu/lab-services/pnh-test-high-sensitivity 46。 pathgroup。 2024年6月5日访问。https://pathconnect.pathgroup.com/testmenu/#/testinfo/ue5irq%3D%3D47。 任务诊断。 2024年6月5日。 UF病理实验室。 2024年6月5日。 爱荷华大学诊断实验室。 2024年6月5日访问。https://www.healthcare。 uiowa.edu/path_handbook/rhandbook/test1123.html 50。 匹兹堡大学。 2024年6月5日访问。https://www.path.pitt.edu/divisision/dives-laboratory-medicine/discion-clinical-clinical-hematopathology/clinical-flow-cytertry-0 51。俄勒冈州健康与科学大学实验室服务。2024年6月5日访问。https://www.ohsu.edu/lab-services/pnh-test-high-sensitivity 46。pathgroup。2024年6月5日访问。https://pathconnect.pathgroup.com/testmenu/#/testinfo/ue5irq%3D%3D47。任务诊断。2024年6月5日。UF病理实验室。2024年6月5日。爱荷华大学诊断实验室。2024年6月5日访问。https://www.healthcare。uiowa.edu/path_handbook/rhandbook/test1123.html 50。匹兹堡大学。2024年6月5日访问。https://www.path.pitt.edu/divisision/dives-laboratory-medicine/discion-clinical-clinical-hematopathology/clinical-flow-cytertry-0 51。德克萨斯大学医学分公司。2024年6月5日访问。https://www.utmb.edu/lsg2/home/details?id=1366 52。Kulasekararaj ag等。UW医学实验室医学和病理学。 2024年6月5日访问。https://dlmp.uw.edu/test-guide/view/pnhflo 53。 血液复兴。 2023; 59:101041。 doi:10.1016/j.blre.2023.101041UW医学实验室医学和病理学。2024年6月5日访问。https://dlmp.uw.edu/test-guide/view/pnhflo 53。血液复兴。2023; 59:101041。 doi:10.1016/j.blre.2023.101041
9。行业指导。通过无菌处理生产的无菌药品 - 当前的良好制造实践,2004年。美国卫生与公共服务部食品和药物管理局药物评估与研究中心(CDER)生物制度评估与研究中心(CBER)监管事务办公室(ORA)。美国卫生与公共服务部食品和药物管理局药物评估与研究中心(CDER)生物制度评估与研究中心(CBER)监管事务办公室(ORA)。
CP-WI-001 警告个人 x x x x x x x CP-ID-001 在开放或受限区域标记/标记个人(陆地/海上) x x x x CP-MI-001 移动开放区域中的个人 x x x x x x CP-MI-002 移动受限区域内的个人(空中/陆地/海上) x CP-MI-003 移动建筑物内或建筑物外的个人(陆地) x x CP-MI-004 将个人移出区域(海上) x x CP-DA-001 拒绝开放区域中的个人访问(陆地) x x x x x CP-DA-002 拒绝受限区域内的个人访问(空中/陆地/海上) x x x x CP-DA-003 拒绝个人访问设施(陆地/海上) x x x x x x CP-DA-004 拒绝个人进入水面或水下(海事) CP-DI-001 使个人在开放区域内退化/丧失能力/阻止个人进入(陆地/海事) x x x x x x x CP-DI-002 使个人在封闭区域内退化/丧失能力/阻止个人进入(空中/陆地/海事) x x CP-DI-003 使个人在建筑物内退化/丧失能力/阻止个人进入(陆地) x
摘要:自主驾驶技术被认为是未来运输的趋势。毫米 - 波雷达具有长距离检测和全天候操作的能力,是自动驾驶的关键传感器。自主驾驶中各种技术的开发依赖于广泛的模拟测试,其中模拟通过雷达模型的真实雷达的输出起着至关重要的作用。当前,有许多独特的雷达建模方法。为了促进雷达建模方法的更好的应用和开发,本研究首先分析了雷达检测的机制及其所面临的干扰因素,以阐明建模的内容以及影响建模质量的关键因素。然后,根据实际应用要求,提出了用于测量雷达模型性能的关键指标。此外,对各种雷达建模技术还提供了全面的介绍以及原理和相关的研究进度。评估这些建模方法的优点和缺点以确定其特征。最后,考虑到自动驾驶技术的发展趋势,分析了雷达建模技术的未来方向。通过上述内容,本文为开发和应用雷达建模方法提供了有用的参考和帮助。