Loading...
机构名称:
¥ 2.0

摘要:在智能运输中,辅助驾驶取决于来自各种传感器的数据集成,尤其是LiDAR和相机。但是,它们的光学性能会在不利的天气条件下降低,并可能损害车辆安全性。毫米波雷达可以更经济地克服这些问题,并得到了重新评估。尽管如此,由于噪声干扰严重和语义信息有限,开发准确的检测模型是具有挑战性的。为了应对这些实际挑战,本文提出了TC – radar模型,这是一种新颖的方法,该方法协同整合了变压器的优势和卷积神经网络(CNN),以优化智能运输系统中毫米波雷达的传感潜力。这种集成的基本原理在于CNN的互补性质,该性质擅长捕获局部空间特征和变形金刚,这些特征在数据中擅长建模长距离依赖性和数据中的全局上下文。这种混合方法允许对雷达信号的更强大和准确的表示,从而提高了检测性能。我们方法的关键创新是引入交叉注意(CA)模块,该模块有助于网络的编码器和解码器阶段之间的高效和动态信息交换。此CA机制可确保准确捕获和传输关键特征,从而显着提高整体网络性能。此外,该模型还包含密集的信息融合块(DIFB),以通过整合不同的高频局部特征来进一步丰富特征表示。此集成过程确保了关键数据点的彻底合并。在Cruw和Carrada数据集上进行的广泛测试验证了该方法的优势,模型的平均精度(AP)为83.99%,平均相交(MIOU)的平均交点为45.2%,表明了鲁棒的雷达感应功能。

TC – radar:用于毫米波雷达对象检测的变压器– CNN混合网络

TC – radar:用于毫米波雷达对象检测的变压器– CNN混合网络PDF文件第1页

TC – radar:用于毫米波雷达对象检测的变压器– CNN混合网络PDF文件第2页

TC – radar:用于毫米波雷达对象检测的变压器– CNN混合网络PDF文件第3页

TC – radar:用于毫米波雷达对象检测的变压器– CNN混合网络PDF文件第4页

TC – radar:用于毫米波雷达对象检测的变压器– CNN混合网络PDF文件第5页

相关文件推荐

2024 年
¥1.0
2025 年
¥1.0