摘要 - 占对象检测是在各种高安全地点执行的关键任务,包括机场,火车施工,地铁和港口。每小时检查数千张X射线图像的持续和乏味的工作可能会在精神上征税。因此,深层神经网络(DNN)可用于自动化X射线图像分析过程,提高效率并减轻安全人员的检查负担。通常在相关文学中使用的神经体系结构是卷积神经网络(CNN),而视觉变压器(VIT)很少使用。为了解决这一差距,本文对X射线图像中非法项目检测的相关VIT体系结构进行了全面评估。这项研究利用了变压器和杂化主链,例如Swin和Nextvit,以及探测器,例如Dino和RT-Detr。结果证明了Dino Transformer探测器在低数据策略,令人印象深刻的Yolov8实时性能以及混合NextVit主链的有效性中的出色准确性。索引术语 - 对象检测,X射线,视觉变压器,深神经网络
主要关键词