Yolov3:实时对象检测
机构名称:
¥ 1.0

“使用卷积神经网络的对象检测”在Tencon 2018-2018 IEEE地区10会议上发表。本文包括使用两个带有MobilenetV1的SSD的模型检测,而另一个使用InceptionV2的较快RCNN。我们从两种模型中都知道,与MobilenEtv1相比,与SSD相比,RCNN更快,更准确。“基于深度学习的对象检测框架”在2020年IEEE研讨会系列(SSCI)中发表。在本文中,提出了基于Yolov3-Resnet检测模块的提名模型,该模型基于深度学习图像中的图像深度学习库中的深度学习图书馆提出了[2]。“使用YOLO.V3的自定义面部识别”论文发表于2021年第三届国际信号处理与通信会议(ICPSC)。在本文中,速度被视为面部识别的约束因子,并使用Yolo.V3算法实施了速度,该算法是一种单个SHOT算法,与其他算法相比,该算法具有很高的处理速度。在本文中,实施了使用R-CNN和YOLO.V3算法的面部识别[3]。“一种基于Yolov3的轻量化对象检测算法,用于车辆和行人检测”,在2021年IEEE亚太亚太地区进行了图像处理,电子设备和计算机(EPECEC)的(IPEC)的提议。频道和图层修剪在轻质Yolov3中用于简化网络体系结构[4]。

Yolov3:实时对象检测

Yolov3:实时对象检测PDF文件第1页

Yolov3:实时对象检测PDF文件第2页

Yolov3:实时对象检测PDF文件第3页

Yolov3:实时对象检测PDF文件第4页

Yolov3:实时对象检测PDF文件第5页

相关文件推荐

对象检测
2024 年
¥1.0
空中对象检测分析
2023 年
¥1.0