摘要:本篇综合综述通过研究采用功能性磁共振成像 (fMRI)、正电子发射断层扫描 (PET) 和脑电图 (EEG) 方法的研究,深入探讨了催眠的认知神经科学和催眠易感性的变化。重点关注领域包括催眠中的功能性脑成像相关性、作为催眠状态指标的脑电图波段振荡、催眠和清醒期间脑电图功能连接的改变,得出关键结论并提出未来的研究方向。所审查的功能连接发现支持以下观点:根据分离和冷控制催眠理论,催眠期间执行控制网络不同组成部分之间可用整合的中断可能与催眠反应期间对主体的改变评估相对应。一个有希望的探索途径是研究额叶的神经化学成分和非周期性脑电图活动在清醒和休息时如何与个体催眠能力的差异相关。未来研究催眠对大脑功能的影响应该优先研究不同神经网络中独特的激活模式。
a 德国于利希研究中心神经科学与医学研究所(INM-7) b 德国杜塞尔多夫大学海因里希-海涅医学院系统神经科学研究所 c 法国塞尔吉巴黎大学理论与建模实验室,CNRS,UMR 8089,塞尔吉-蓬图瓦兹 cedex 95302 d 德国于利希研究中心于利希超级计算中心(JSC)高级模拟研究所 e 德国于利希研究中心神经科学与医学研究所(INM-1) f 新加坡国立大学睡眠与认知中心、转化磁共振研究中心和 N.1 健康研究所 g 新加坡国立大学电气与计算机工程系 h 美国马萨诸塞州查尔斯顿麻省总医院 Martinos 生物医学成像中心 i 新加坡综合科学与工程项目(ISEP)
此预印本的版权所有者此版本于 2021 年 7 月 18 日发布。;https://doi.org/10.1101/2021.07.14.21260531 doi: medRxiv preprint
两种化合物——全氟辛酸 (PFOA) 和全氟辛烷磺酸 (PFOS)——最近受到了《关于持久性有机污染物 (POP) 的斯德哥尔摩公约》的严格审查。2020 年底,欧盟食品监管机构对食品中 PFOA、PFOS 和另外两种 PFAS 化合物——全氟壬酸 (PFNA) 和全氟己烷磺酸 (PFHxS) 的总暴露量设定了限值。此举紧随美国参议院 2019 年 PFAS 排放披露和保护法案,该法案要求对与安全饮用水和有毒化学品管理相关的 PFAS 进行监管。该法案还要求将 172 种指定的 PFAS 立即纳入环境保护署 (EPA) 的有毒物质排放清单 (TRI)。
摘要:三氟甲基(–CF 3)组代表药物中高度普遍的功能。在过去的几十年中,在三氟甲基化的合成方法的发展中取得了重大进展。相比之下,目前尚无已知的金属酶可以催化C(SP 3)–CF 3键。在这项工作中,我们证明了一种非血红素铁酶,羟基苯甲酸酯合成酶来自杏仁核东方(aohms),能够从高度碘(III)试剂中产生CF 3的自由基,并指导它们以辅助性烯烃丙烯酸烷烯三氟甲酰胺甲氮化酶。建立了基于Staudinger Liga的高通量筛选(HTS)平台(HTS)平台,从而实现了对这种物质转化的AOHMS变体的快速评估。最终优化的变体接受一系列烯烃底物,产生三氟甲基氮化产物的产物,产量高达73%和96:4对映体比率(E.R.)。生物催化平台可以通过改变碘(III)试剂来进一步扩展到烯烃五氟乙基氮化氮化和重氮化。另外,阴离子竞争实验为这种生物学转变提供了对根本反弹过程的见解。这项研究不仅扩大了金属酶的催化库,以进行根本转化,而且还为有机氟的合成创造了新的酶促空间。
引言结直肠癌(CRC)统称是指在直肠上皮或从息肉中的结肠上皮形成中发展的恶性肿瘤。1 CRC是加拿大第三大流行的癌症2,是癌症相关死亡的第二大原因(占所有癌症死亡的11%)。3据估计,在所有年龄段的男女中,加拿大CRC的10年患病率为10年,2018年为每100,000人343.5例(或总共97,755例)。4转移性结直肠癌(MCRC)表明,该癌症已扩散到原发性肿瘤部位以外的人体(即IV期疾病),其中最常见的转移位置是肝脏,肺,腹膜,腹膜和远处的淋巴结。5诊断时CRC的阶段与存活密切相关。6例早期CRC患者通常是无症状的,而患有晚期疾病的患者会根据转移的位置(包括右上方象限,腹部延伸,早期饱腹感,上饱和性症状,上lave骨腺病和周期性结节)而变化不同。7右侧(近端)肿瘤很少存在
更广泛的上下文稳定和成本效率的Li-Metal电池(四肢)对于非额外的商业电池能量密度不适。然而,使用常规电解质时,Li-i-Metal阳极的实施会阻碍低周期的寿命和安全性。尤其是,在骑自行车期间发生电子活动“死”锂和树突的形成。先前的研究表明,富含氟的界面层化学对于Li-o-亚属阳极的稳定很重要,当使用高分氟化溶剂和/或盐时,这可以实现。在本文中,我们引入了一种替代方法,该方法利用带正电的氟化阳离子和带负电荷的Li-metal阳极之间的静电吸引力,在电极表面附近产生了大量的氟化物种,在电解质中具有非常低的添加剂(B 0.1 wt%)。结果,形成了富含氟的富含荧光界面层,从而实现了密集的Li金属的无树枝沉积。通常,我们提出了一种通过静电吸引力将所需的化学物种运送到电池阳极的策略,同时使用微量的添加剂,因此可以显着降低实施高能量电池的成本和环境足迹。
Constant current 0.2C charge to FC Voltage, then constant voltage FC Voltage charge to current declines to 0.02C, rest for 10min, constant current 0.2C discharge to 2.8V, rest for 10min.Repeat above steps till continuously discharge capacity higher than 80% of the initial capacity of the battery.电池以0.2C 充饱,静置10 分钟,然后以0.2C 放空, 静置10 分钟。重复以上充放电循环直至放电容量低于初 始容量的80%。
绝对音高 (AP) 是指无需外界参考即可轻松识别乐音的能力,其神经基础尚不清楚。关键问题之一是这一现象背后是感知过程还是认知过程,因为感觉和高级大脑区域都与 AP 有关。为了整合对 AP 的感知和认知观点,我们在此研究了感觉和高级大脑区域对 AP 静息态网络的共同贡献。我们对大量 AP 音乐家 (n = 54) 和非 AP 音乐家 (n = 51) 的源级 EEG 进行了全面的功能网络分析,采用两种分析方法:首先,我们应用基于 ROI 的分析来检查听觉皮层和背外侧前额叶皮层 (DLPFC) 之间的连接,使用几种已建立的功能连接测量方法。这项分析重复了之前的一项研究,该研究报告了 AP 音乐家这两个区域之间的连接增强。其次,我们对相同的功能连接测量进行了基于全脑网络的分析,以更全面地了解可能涉及支持 AP 能力的大规模网络的大脑区域。在我们的样本中,基于 ROI 的分析没有提供听觉皮层和 DLPFC 之间 AP 特定连接增加的证据。全脑分析显示,AP 音乐家的三个网络连接增加,包括额叶、颞叶、皮层下和枕叶区域的节点。在感觉和大脑周边区域的高级区域都发现了网络的共同点。需要进一步研究来证实这些探索性结果。
二氟甲基化和二氟烷基化试剂,其中二氟甲基亚砜亚胺 10 和砜 9,11 因其在有机合成中的独特反应性而引起了广泛关注。二氟烷基亚砜亚胺和砜试剂的高度可调功能性在不同反应条件下表现出不同的反应性和选择性。Hu 等人报道,N-甲苯磺酰基-S-二氟甲基-S-苯基亚砜亚胺 [PhS(O)NTsCF 2 H] 可以在 NaH 存在下释放二氟卡宾,被 S-、N- 和 C-亲核试剂捕获(方案 1 a,左)。10a 相反,光催化使 PhS(O)NTsCF 2 H 成为二氟甲基自由基来源,用于烯烃的氧化二氟甲基化。 12 二氟甲基苯基砜 (PhSO 2 CF 2 H) 也采用了类似的活化策略,以 LHMDS 为碱进行去质子化生成亲核性 PhSO 2 CF 2 − 物质,13 而在电化学条件下则得到亲电性 PhSO 2 CF 2 自由基物质(方案 1 b)。14 然而,同时具有亚砜亚胺和砜官能团的二氟烷基化试剂的不同反应性和选择性尚未见报道(方案 1 c)。