SRIM 模拟氢离子与稀土元素掺杂的氧化铋纳米粒子的相互作用 R. Alhathlool、MH Eisa * 物理系,科学学院,伊玛目穆罕默德伊本沙特伊斯兰大学(IMSIU),利雅得 13318,沙特阿拉伯 近年来,模拟方法受到了各个领域的广泛关注。使用 SRIM 程序将稀土钽酸镥(LuTaO 4 )掺杂的“氧化铋(Bi 2 O 3 )薄膜沉积到聚合物基底上。” SRIM 程序用于计算能量在 1.0 MeV 至 20 MeV 之间的 Bi 2 O 3 薄膜的一些物理特性。研究了 LuTaO 4 、Bi 2 O 3 、C 10 H 8 O 4 和 LuTaO 4 / Bi 2 O 3 /C 10 H 8 O 4 样品的“电子和核阻止本领”。这些研究结果表明,稀土掺杂可以改善复合材料的性能。离子束与物质的相互作用会产生各种各样的现象。在 C 10 H 8 O 4 上沉积掺杂 LuTaO 4 的 Bi 2 O 3 薄膜会导致材料“电子和核阻止本领”和范围发生变化。将已发表的数据与获得的结果进行了比较,并提供了计算参数。(2024 年 6 月 1 日收到;2024 年 8 月 1 日接受)关键词:阻止本领、氧化铋、钽酸镥、SRIM、聚合物 1. 简介 阿尔法粒子、氘核和质子对物质有显著影响。短程核力与质子和阿尔法粒子相互作用。随着能量下降,带电粒子会失去速度。在电离和激发过程中,重带电粒子都会失去能量。重带电粒子碰撞时传递的能量较少 [1]。
α-羟基酸(AHA),溶解在水中并且具有还原性和酸性品质等二醇酸(C₂H₄O₃)。它包含一个羧基(-COOH),该羧基可以与醇通过酯化酸化乙酸酯的反应。其中等酸度使IT导致基于分离的溶液,产生氢离子(H⁺),并有助于护肤产品的脱角质质量。另外,乙醇酸可以通过与碱中和反应进行中和反应来产生盐等盐。由于其反应性,它可以用作化学剥离剂和无效组成。它还具有降低的品质,可以影响不同种类的反应中其他有机分子。
膜已应用。双极板位于电极的外侧。这些包含通道,气体通过这些通道流到电极的整个表面。它们还可以起到排出产生的水的作用。氧化(电子损失)发生在阳极,还原(电子增益)发生在阴极。燃料(在本例中为氢)在阳极被氧化并释放电子。这些电子可以从阳极(从而成为电池的负极)通过外部电路流到阴极(从而成为正极)。氢离子流过聚合物电解质膜到达阴极以平衡电荷。因此,燃料电池可以像蓄电池一样供应电力。然而,与电池不同,燃料电池不需要充电,并且其电极也不会改变。细胞内发生以下反应:
图1:具有标准钝化为离子敏感层的CMOS ISFET,信号转换的扩展门电极和下方的MOSFET,对氢离子(H +)敏感。H +的吸附或释放改变了闸门的电池,这会改变源和排水之间的电流。因此,可以测量与与表面结合的H +离子成正比的电信号变化。与可自定义的特殊过程相比,标准CMOS流程中的ISFET可以开发和制造更具成本效益。,这也面临着几个挑战:首先,作为离子敏感层的标准钝化会引起对最大斜率的敏感性,因为在25°C时NERNST的59 mV/pH值和信号漂移中的59 mV/pH值。此外,ISFET的操作点移动和
探索既具有成本效益又环保的氢生产和燃料电池设计的替代方法。构成地球地壳的27.7%,硅(Si)是我们星球上第二大元素(10)。在各个行业中,其自然的丰富性和流行率使其成为可再生能源产生的有吸引力的候选人(11)。在半导体行业中,估计有35-40%的硅在晶圆生产过程中作为废物丢失,该过程将纯硅锭将其切成薄的碟片,从而产生大量的锯片废物(12)。通过涉及Si和碱性溶液的蚀刻反应,含有氢氧化离子(OH-)的浓度高于氢离子(H +),硅废物(SIW),可以选择性地溶解并去除(eqn。1)。反应产生Si化合物和H 2气体,后者可以在电化学细胞中消耗以产生电力(13)。
1. Illumina 测序: • 原理:使用可逆终止子进行合成测序。 • 主要特点:高准确度、短读长、高通量和成本效益。 应用:全基因组测序、外显子组测序、RNA 测序等。 2. Ion Torrent 测序: 原理:检测 DNA 合成过程中释放的氢离子。 主要特点:速度快、适合靶向测序和台式仪器。 应用:靶向测序,包括癌症面板和扩增子测序。 3. PacBio 测序(SMRT 测序): • 原理:在合成过程中实时观察 DNA 聚合酶。 • 主要特点:长读长、能够捕获结构变异。 • 应用:从头基因组组装、全长 RNA 测序和表观遗传学研究。
1。医学生物化学简介,生物化学在医疗保健,伦理学和责任以及生物化学基础中的作用。2。生物细胞,物理化学,液体和电解质稳态以及氢离子稳态。3。生物分子。•碳水化合物,脂质,蛋白质和氨基酸的功能和分类。•单糖,氨基酸和脂肪酸的立体异构体和化学。•蛋白质的结构组织和结构功能关系。血红蛋白和肌红蛋白,O2转运和存储的分子机制。镰状细胞贫血和themias的分子基础•肌肉收缩的分子机制。•血浆蛋白,其功能和临床意义。4。分子生物学和人类遗传学。•核苷酸及其衍生物,合成核苷酸。•人类遗传学。•分子遗传学和生物技术。•癌变的分子基础。5。免疫学。•免疫,抗原,抗体,Ag-ab反应,称赞系统的类型和概念。•免疫球蛋白 - 分类,功能,抗体多样性(免疫遗传学)。•身体的免疫反应,免疫缺陷疾病,超灵敏度,移植和恶性肿瘤的免疫学。
二氧化碳的光催化还原可以在多种材料上进行,包括无机半导体、碳基半导体、金属配合物、超分子及其衍生物 [3]。光催化过程中的关键步骤是 CO2 分子的初始吸附和活化。吸附在氧空位处进行,在此过程中 CO2 从 Ti3+ 获得电子,形成带负电的物质 [4]。该过程伴随着 CO2 的线性结构转变为高度反应性的弯曲形式 [5]。值得一提的是,CO 2 − 物种的形成可以在没有光催化剂表面照射的情况下发生,但这会显著增加它们的浓度 [ 4 ]。另一个重要步骤是当光照射到光催化剂上时形成电子-空穴对。形成的电子被转移到 TiO 2 表面,在那里被吸附的 CO 2 捕获,从而增强了带负电荷物种的形成。同时,产生的空穴与水分子接触,产生氢离子 (H + ) 和羟基自由基 ( · OH)。CO 2 − 自由基可以进一步转化为 CO