I。常规的台式光谱仪通常很大,并且仅限于实验室环境。随着综合光子学的发展,光谱仪的微型化导致了适用于实验室以外的更多应用,包括农业分析和水下研究[1],[2]。它还可以启用实验室芯片应用程序[3],[4],[5]。基于其工作原理,可以将集成光谱仪大致分为使用分散,窄带滤波,傅立叶变换或数值重建的类别[6]。第一个类别具有分散光学元件,它们在空间上分开不同的频率,包括echelle光栅[7]和阵列的波导格栅(AWG)[8],[9]。第二种类型使用窄带过滤器(例如环形分解器和马赫Zehnder干涉仪(MZI)[10],[11],[11],[12],选择性地将不同的光谱成分传输到不同的检测器。第三个通常称为傅立叶变换型体镜检查(FTS),其中通过在时间或空间域中转换干涉信息,使用傅立叶变形[13],[14],[15]获得频谱。最后一个类别采用了一系列具有不同光谱响应的组件,并从组合信号[16],[17]中重建光谱。它依赖于
摘要我们根据近红外光谱制度的芯片尺度集成光电探测器的实现和表征,基于在氮化硅硅硅硅基上的摩西2 /WS 2异缝的整合。这种配置在780 nm的波长(表明内部增益机制)下达到〜1 a w -1的高响应性,同时将暗电流抑制至〜50 pa的水平,与仅Mose 2的参考样本相比,降低了〜50 pa的水平。我们测量了暗电流的功率频谱密度低至〜1×10 - 12 a hz -0.5,从中,我们从中提取噪声等效功率(NEP)为〜1×10-12 - 12 W Hz -0.5。为了演示设备的实用性,我们将其用于表征与光电探测器相同芯片上的微林共振器的传输函数。能够在芯片上整合局部光电电视机并在近红外制度下操作具有高性能的设备,这将在光学通信,量子光子学,生物化学传感等的未来集成设备中发挥关键作用。
1耶鲁大学天文学系,美国纽黑文52号,美国康涅狄格州06511; ryan.blackman@yale.edu 2 Department of Astronomy, The Ohio State University, 4055 McPherson Laboratory, 140 West 18th Avenue, Columbus, OH 43210, USA 3 Lowell Observatory, 1400 Mars Hill Road, Flagstaff, AZ 86001, USA 4 Ball Aerospace and Technologies Corporation, 1600 Commerce Street, Boulder, CO 80301, USA 5 Department of Physics, Yale University, 217 Prospect ST,New Haven,CT 06511,美国6物理与天文学系,旧金山州立大学,旧金山Holloway大街1600号,旧金山,CA 94132,美国7 DTU Space,National Space Institute,丹麦技术大学,Elektrovej 328,DK-2800 KGS技术大学。Lyngby,丹麦8号亚利桑那大学光学科学学院,1630 E University Boulevard,Tucson,Tucson,AZ 85719,美国9 Jet Propulsion实验室,加利福尼亚技术学院,4800 Oak Grove Drive,Pasadena,Pasadena,CA 9110 9 35899,美国11 INAF - Osservatorio Astromonico di Brera,通过Emilio Bianchi 46,I-23807 Merate,意大利Merate,12 Fibertech Optica Inc,330 Gage Avenue,Suite 1,Kitchener 1,Kitchener,On,On,ON,N2M 5C6,加拿大N2M 5C6,加拿大,2019年12月20日获得2019年12月20日; 20020年2月25日修订; 3月17日接受;出版于2020年4月28日
简介:下一代无线网络将依靠更小的蜂窝和更大的带宽来增加容量。通过保持无线电头硬件简单,光纤无线电技术可以实现这种密集的基站网络。利用硅光子技术实现基站硬件的小型化,可以降低尺寸和成本。对于微波光子应用,氮化硅 (SiN) 平台提供损耗极低的波导和一些最好的集成滤波器。然而,随着转向更高的载波频率,在毫米波和太赫兹频段,对光电二极管带宽的要求也会增加。当前的 SiN 平台缺少这种光电二极管,因此阻碍了高频微波光子应用。[1] 我们展示了一种 300 GHz 的通信链路,该链路由 SiN 上的异构集成单行载波 (UTC) 光电二极管作为发射器中的光电换能器实现。
营养不良,肝病,肾病,休克,水肿和心血管疾病。相比之下,可以在脱水中发现高水平的白蛋白(高蛋白血症,> 55 g/L),体重或体内脂肪的增加。3在健康人的尿液中排泄少量白蛋白,尿液中白蛋白的参考范围为2.2-25 mg/l。4,5但是,当由于糖尿病或肾脏损伤而变得更可渗透时,可能会发生升高的尿白蛋白排泄。1,6严重的肾小球滤过机制可以增加以增加尿白蛋白排泄,该尿白蛋白排泄称为微藻或大藻蛋白尿,具体取决于丢失的白蛋白量。5,6微量白蛋白尿是指从24小时的尿液中收集24 h尿液或30-300 mg/l的尿白蛋白排泄,从随机或先生的尿液收集中。4这种白蛋白显示出最早的糖尿病性肾病阶段。然而,在没有早期检测和治疗的患者中,微量白蛋白尿可能会在一年中的一年中发展到不可逆的大藻(4300 mg/day)。因此,在非糖尿病患者中有慢性肾脏疾病和心血管疾病的人的肾脏损害的早期迹象。6已提出许多方法来确定尿液中的白蛋白量,例如酶联免疫吸附测定法(ELISA),7种荧光,8,9 Immunotortytimetry(IT),10,111111111111 IN)免疫法(IN),12个padimimmunoas- Say(RIA),RIA),13和CHEMIA,13和CHEMIA(CLIA),13和CHEMIA(CLIA)。14,15尽管这些方法是高灵敏度和特异性,但它们存在一些局限性,例如健康危害,耗时,劳动力密集的协议以及需要经验丰富的技术人员。因此,已经开发了几种传感器方法作为一种简单的方法来确定HSA的量,例如石英晶体微生体(QCM),16,17电化学传感器,18-20
e x Cote s ummary the Art Silicon Photonics是光子综合电路(PICS)的有吸引力的技术,因为它直接建立在硅纳米电子世界的极端成熟基础上。因此,它以非常高的收率和低成本的方式打开了通向非常高级照片的路线。更准确地说,硅光子图片如今在200和300mm CMOS铸造厂的商业生产中,具有NM级别的精度和可重复性,从光子学的角度来看是前所未有的。基本技术利用了硅在绝缘子(SOI)晶圆中,其中硅氧化硅层的硅层上的硅层充当了波导的核心,该波导将芯片上的设备互连。或者,SOI晶片被硅晶片取代,用一堆氮化硅波导核心层包围,被氧化硅覆盖层包围。现在,这种氮化硅图片被认为是硅光子家族的组成部分。在此路线图的单独章节中描述了它们。因此,本章主要关注基于SOI的硅光子学,是硅光子学界的主要方式。值得注意的是,近年来,许多SOI PIC平台添加了第二个光子波引导层,是氮化硅层,从而结合了两种方法的最佳方法,并可以提高设计和增强性能的灵活性。
Cegielski, Piotr J. 等人。“用于 OCT 应用的氮化硅波导和光斑尺寸转换器,在 1010 nm 至 1110 nm 的宽波长范围内损耗小于 1.76 dB。”《ECIO》(2020 年)