港口特点 位于密歇根湖东岸,距伊利诺伊州芝加哥东北 95 英里,距密歇根州格兰德黑文以南 23 英里 授权:1852 年 8 月 30 日、1867 年 3 月 2 日、1899 年 3 月 3 日、1905 年 3 月 3 日、1930 年 7 月 3 日、1935 年 8 月 30 日和 1954 年 9 月 3 日的河流与港口法案 深吃水商港 项目水深:入口 23 英尺,内航道和马卡塔瓦湖 21 英尺 2022 年运送和接收的材料为 73.3 万吨 约 5,500 英尺的结构,包括防波堤、桥墩和护岸 超过 6.5 英里的维护航道 外港疏浚材料用于海滩养护。 荷兰市运营莱克伍德路疏浚物放置站,可回收从内港和马卡塔瓦湖疏浚的物质。 主要利益相关者:美国海岸警卫队、Brewer's City Dock Inc.、Padnos Iron and Metal 和 Verplank Trucking
OSW 示范项目 - 缅因大学 NE Aqua Ventus I:项目概况项目概况 • 一台采用混凝土半潜式基础的 10+ MW 浮动海上风力涡轮机 • 涡轮机类型:一台 10 MW 级海上风力涡轮机 • 距岸距离:距离缅因州蒙希根岛以南 3 英里 [州立水域] • 水深:约 90-120 米 • 项目成本:1.5 亿至 2 亿美元项目技术亮点 • 独特的浮动混凝土基础设计 • 技术安装时噪音和海床扰动最小 • 涡轮机可以在港口安装和调试,并拖至项目现场电力购买协议 (PPA) • 缅因大学与缅因中央电力公司签订了全面执行的 20 年电力购买协议 New England Aqua Ventus (NEAV) 的 1 亿美元项目投资 • 缅因大学团队已与 Diamond Offshore Wind 和 RWE(全球第二大 OSW 开发商)的合资企业 NEAV 合作和安装 • NEAV 将提供技术见解、资本和风险降低能力
港口特征 该项目位于密歇根上半岛的基威诺半岛,介于基威诺湾和苏必利尔湖之间。西上入口位于明尼苏达州德卢斯以东 169 英里处,东下入口位于密歇根州马凯特以西约 60 英里处。 授权:1865 年 3 月 3 日、1866 年 7 月 3 日、1869 年 4 月 10 日、1871 年 3 月 2 日、1872 年 3 月 27 日、1873 年 3 月 3 日、1886 年 8 月 5 日、1890 年 9 月 19 日、1898 年 3 月 15 日、1910 年 6 月 25 日、1919 年 3 月 2 日、1935 年 8 月 30 日的《河流与港口法案》 深吃水商业水道项目 项目水深:上入口航道 32 英尺、下入口航道 28 英尺、内河航道 25 英尺 超过 24,300 英尺的建筑结构,包括防波堤、桥墩和护岸 超过 18 英里的维护航道 基威诺水道密闭处置
本报告旨在评估市场上现有的测深 LiDAR(光探测和测距)系统,以便为爱尔兰政府采购一套系统。爱尔兰国家海底调查局(INSS)绘制了超过 468,500 平方公里的海床;大多数调查区域位于爱尔兰领海海床的外缘。INSS 的后续项目是 INFOMAR:综合测绘 为了爱尔兰海洋资源的可持续发展,这是一项为期 20 年的调查计划,于 2006 年启动。INFOMAR 提议的海床测绘将包括我们具有商业价值的近海区域的测绘,因此也许现在最重要的测绘工作迫在眉睫。这种近海测绘的大部分区域(可达 7000 平方公里)都可以使用 LiDAR 有效地绘制;LiDAR 是一种安装在轻型飞机上的测深光探测和测距仪器,因此可以快速高效地对大面积区域进行测量。爱尔兰海洋研究所和地质调查局将利用 INSS 和随后的 INFOMAR 获取的数据,通过提高水深测量的质量和准确性,将爱尔兰的海图带入 21 世纪,从而履行爱尔兰在 SOLAS 下的义务。爱尔兰是《国际海上人命安全公约》的签署国。2002 年 7 月生效的新修正案要求爱尔兰“安排收集和汇编水文数据并发布,diss
根据夏威夷行政法规 (HAR) § 11-200.1-16 和环境委员会于 2020 年 11 月 10 日审查并同意的土地和自然资源部 (Department) 豁免清单,根据一般豁免类型 1,该主题请求免于准备环境评估,该类型规定:“对现有结构、设施、设备或地形特征的操作、维修或维护,涉及对先前存在的使用进行轻微扩展或轻微更改”和第 1 部分第 44 项规定:“由部门颁发的常规许可证、执照、注册和进入权,涉及对先前存在的影响可以忽略不计”和一般豁免类型 5 规定:“基本数据收集、研究、实验管理以及资源和基础设施测试和评估活动不会对环境资源造成严重或重大干扰”和第 1 部分第 1 项规定:“对现有环境条件(如噪音、空气质量、水流、水质等)”、第 2 项规定“非破坏性数据收集和清查,包括实地、航空和卫星测量和制图”、第 3 项规定“进行地形、测深、波浪、沿海运输、水深和位置调查”、第 12 项规定“进行陆地和海洋考古调查”、第 19 项规定“进行规划和可行性研究”、第 20 项规定“允许进入土地进行上述活动”。
内大陆架是冲浪区和中大陆架之间的区域,表面和底部边界层 (BBL) 在此汇合甚至重叠 ( Lentz 1994 )。在这里,横岸风有助于跨内大陆架的输送 ( Fewings 等人 2008 ),而中大陆架的输送则由埃克曼动力学引起的沿岸风驱动。内大陆架的另一个先前未研究过的显著特征是,内大陆架是内潮汐几乎失去所有能量的区域。后者是我们在这里的重点,并引出了内大陆架作为内潮汐冲浪区的作用的新区分 ( Becherer 等人 2021 ,以下简称第二部分 )。这种内部冲浪区,其中内部潮汐以受水深限制的饱和状态存在,具有与表面重力波冲浪区类似的特征(Thornton 和 Guza 1983;Battjes 1988)。内部潮汐要么在当地产生(Sharples 等人 2001;Duda 和 Rainville 2008;Kang 和 Fringer 2010),要么在传播路径较长的偏远地区产生(Nash 等人 2012;Kumar 等人 2019),将大量能量传输到内架(Moum 等人 2007b;Kang 和 Fringer 2012)。在这里,能量被湍流耗散,产生斜压混合,从而导致水体转化。在内架上,内部潮汐在驱动
本格拉洋流大型海洋生态系统 (BCLME) 位于非洲西南部海岸,从南赤道好望角东部一直延伸到安哥拉北部地缘政治边界附近的安哥拉前线(见图 1)。它涵盖了世界四大沿海上升流生态系统之一,位于海洋的东部边界。与洪堡、加利福尼亚和加那利系统一样,本格拉是海洋生物多样性和海洋食物生产的重要中心。BCLME 独特的水深、水文、化学和营养动力学使其成为世界上最富饶的海洋区域之一,年平均初级生产力为每平方米每年 1.25 克碳 - 大约是北海生态系统的六倍。孟加拉湾海洋生态系统的高初级生产力水平支撑着全球重要的生物多样性和浮游动物、鱼类、海鸟和海洋哺乳动物的生物量,而近海和离岸沉积物中则蕴藏着丰富的珍贵矿物(尤其是钻石)以及石油和天然气储量。沿海地区的自然美景也使一些地区旅游业蓬勃发展,其中许多地区以全球标准来看仍属原始状态。然而,工业污染以及规划和管理不善的沿海开发和近海活动正在导致脆弱的沿海栖息地迅速退化。
本格拉洋流大型海洋生态系统 (BCLME) 位于非洲西南部海岸,从南赤道好望角东部一直延伸到安哥拉北部地缘政治边界附近的安哥拉前线(见图 1)。它涵盖了世界四大沿海上升流生态系统之一,位于海洋的东部边界。与洪堡、加利福尼亚和加那利系统一样,本格拉是海洋生物多样性和海洋食物生产的重要中心。BCLME 独特的水深、水文、化学和营养动力学使其成为世界上最富饶的海洋区域之一,年平均初级生产力为每平方米每年 1.25 克碳 - 大约是北海生态系统的六倍。孟加拉湾海洋生态系统的高初级生产力水平支撑着全球重要的生物多样性和浮游动物、鱼类、海鸟和海洋哺乳动物的生物量,而近海和离岸沉积物中则蕴藏着丰富的珍贵矿物(尤其是钻石)以及石油和天然气储量。沿海地区的自然美景也使一些地区旅游业蓬勃发展,其中许多地区以全球标准来看仍属原始状态。然而,工业污染以及规划和管理不善的沿海开发和近海活动正在导致脆弱的沿海栖息地迅速退化。
IGFS 是一项新的统一“伞状” IAG 服务,它将协调重力场相关数据的收集、验证、归档和传播、重力场活动相关软件的交换以及与地球重力场有关的课程、信息材料和一般公众宣传。IGFS 的总体目标是协调大地测量和地球物理界重力场相关数据、软件和信息服务。IGFS 实体数据的组合数据将包括卫星衍生的全球模型、陆地、机载、卫星和海洋重力观测、地球潮汐数据、GPS 水准数据、地形和水深测量的数字模型,以及卫星测高仪的海洋重力场和大地水准面。重力场的静态和时间变化都将由 IGFS 覆盖。 IGFS 不直接处理重力场数据分发 - IGFS 将作为以下重力场相关 IAG 服务的统一服务 - “IGFS 中心”:BGI(国际重力局 - 重力数据的收集、存档和分发)、IGeS(国际大地水准面服务 - 大地水准面模型的收集和分发、大地水准面学校、ICET(国际地球潮汐中心 - 全球地球潮汐数据的收集和存档)、ICGEM(国际全球地球模型中心 - 卫星和表面球谐模型的分发)、IDEMS(国际 DEM 服务 - 全球 D
摘要:激光诱导的荧光(LIF)技术已被广泛应用于水生浮游植物的遥感中。然而,由于激光激发引起的荧光信号弱和水中激光的显着衰减,分析检测变得具有挑战性。此外,很难同时检索衰减系数(K MF激光雷达)和通过单个荧光激光拉尔(lidar)在180°(βF)处的荧光体积散射函数。为了解决这些问题,提出了一种新型的全纤维荧光海洋激光雷达,其特征是:1)使用单光子检测技术获得地下荧光曲线,以及2)引入荧光激光痛的KLETT倒置方法,以同时检索K MF Lidar和βF。根据理论分析,叶绿素浓度的最大相对误差范围为0.01 mg/m 3至10 mg/m 3,在10 m的水深度范围内含量小于20%,而K MF激光射线的最大相对误差则小于10%。最后,将船舶单光子荧光激光雷达部署在实验容器上,以在离岸区域的固定站进行9小时以上的实验,从而验证了其分析能力。这些结果证明了LiDAR在分析水生浮游植物的分析中的潜力,从而提供了支持研究地下浮游植物的动态变化和环境反应的支持。