图 1。用于在 GIS 中表示底栖栖息地特征的矢量数据模型示例图 2。用于在 GIS 中表示底栖栖息地特征的栅格数据模型示例图 3。栖息地规模、传感器分辨率、分析/可视化技术与底栖栖息地测绘资金之间的关系图 4。传感器的相对尺度和底栖栖息地测绘分析图 5。多波束测深数据显示数据分辨率对在不同空间尺度上可视化底栖栖息地的影响图 6。底栖栖息地数据的数据显示、数据分析和数据集成之间的差异示例图 7。显示了显示和分析测深数据的不同技术的图表。转换为栅格 (b) 的水深点数据 (a) 可以查询以获取其他数据,例如深度轮廓 (c) 图 8。图示说明从侧扫声纳马赛克中划定地质基质,随后使用更高分辨率的 SPI 样本划定子栖息地 图 9。侧扫和多波束声纳数据的比较显示数据连续性的差异 图 10。Kostylev 等人的底栖栖息地测绘示例。2001 图 11。不同点插值技术的比较 图 12。使用平面视图摄影进行鳗草监测的示例数据收集和分析方法。
有效管理海草栖息地需要有关海草状况和分布的详细信息。本文介绍了一项更大规模研究的第一步,该研究旨在评估波多黎各卡哈德穆埃托斯岛自然保护区内海草分布的长期变化。使用 WorldView-2 (WV-2) 图像和现场数据集对保护区内的海草床进行了高空间分辨率表征。WV-2 得出的海底反射率和水深测量数据用于进行基于对象的图像分析 (OBIA)。此分析的波段选择基于现场光谱水衰减测量。通过监督分类和上下文编辑对 OBIA 的结果多边形进行分类。使用 164 个采样点对图像进行了校准和验证。与传统的精度评估工具一起,创建了可靠性图,以提供评估地图精度的另一个指标。总体准确率为 96.59%,总海草准确率为 100%。海草床主要位于岛屿的西部和北部,主要由 Thalassia testudinum 和 Syringodium filiforme 组合组成。结果表明,光照可用性不是研究区域海草定植的限制因素,强波浪能可能是调节海草分布的重要因素。这张海草栖息地地图改进了之前的测绘工作,是该保护区的第一张高空间分辨率地图。事实证明,所使用的数据和方法对于在高度复杂的底栖环境中绘制海草栖息地地图非常有效。
机载和地面激光扫描中的回波数字化和波形分析 ANDREAS ULLRICH,MARTIN PFENNIGBAUER,霍恩,奥地利 摘要 基于短激光脉冲飞行时间测距的激光雷达技术能够以所谓的点云形式获取准确而密集的 3D 数据。该技术适用于不同的平台,如地面激光扫描中的稳定三脚架或机载和移动激光扫描中的飞机、汽车和船舶。从历史上看,这些仪器使用模拟信号检测和处理方案,但专用于科学研究项目或水深测量的仪器除外。2004 年,一款用于商业应用和大量数据生成的激光扫描仪设备 RIEGL LMS-Q560 被推向市场,它采用了一种激进的替代方法:对仪器接收到的每个激光脉冲的回波信号进行数字化,并在所谓的全波形分析中离线分析这些回波信号,以便使用适用于特定应用的透明算法检索回波信号中包含的几乎所有信息。在激光扫描领域,从那时起就建立了一个不太具体的术语“全波形数据”。我们尝试对市场上发现的不同类型的全波形数据进行分类。我们从仪器制造商的角度讨论了回波数字化和波形分析中的挑战。我们将讨论使用这种技术所能获得的好处,特别是关于脉冲飞行时间激光雷达仪器所谓的多目标能力。
1.简介 2010 年 4 月,美国国家海洋和大气管理局 (NOAA) 下属的国家地球物理数据中心 (NGDC) 开发了路易斯安那州新奥尔良的三个水深地形数字高程模型 (DEM)(图1)。这些 DEM 是根据 2009 年美国复苏与再投资法案 (ARRA) 1 为 NOAA 海岸调查发展实验室 (CSDL) 开发的,旨在评估 Vertical.Datum 的实用性。转换工具 ( VDatum ) 由 NOAA 海岸调查办公室 (OCS)、国家大地测量局 (NGS) 和业务海洋产品和服务中心 (CO-OPS) 联合开发 ( http://vdatum.noaa.gov/ )。参考 1988 年北美垂直基准 (NAVD 88) 的 1/3 弧秒 2 DEM 经过精心开发和评估。从 VDatum 派生的 NAVD 88 到平均高水位 (MHW) 1/3 弧秒转换网格。然后创建项目区域以模拟新奥尔良地区的 NAVD 88 和 MHW 之间的关系。NGDC 将 NAVD 88 DEM 和转换网格结合起来开发了 1/3 弧秒 MHW DEM。使用相同的过程生成平均低低水位 (MLLW) 1/3 弧秒转换网格。NAVD 88 DEM 是根据该地区的各种数字数据集生成的(网格边界和来源如图 1、5 和 10 所示),这些 DEM 将用于风暴潮淹没和海平面上升建模。本报告总结了开发三个新奥尔良 DEM 所使用的数据源和方法。
为了确定是否可以安全地执行所需的操作,谨慎的导航员必须了解其车辆定位系统的当前空间不确定性以及用于描绘战区的导航地图模型的空间不确定性。从安全导航的角度来看,了解数据的准确性与数据本身一样重要。本文讨论了 GPS 车辆定位误差和特定于水深地图模型(图表)的相对较大的数据建模误差对电子海图 (EC) 的影响。它提出并演示了软件解决方案,这些解决方案可以统计评估这两种空间不确定性,并在 EC 环境中以图形方式集成这两个随机模型。本文还记录了加拿大水文服务局进行的一项实验,旨在确保实时 DGPS 用户计算出统计上有效的位置误差估计。实验使用传统的伪距冗余实时误差分析获得了位置误差估计,并对其进行了地面实况分析。利用这些地面实况信息,根据经验确定了改进的伪距误差模型。新的伪距误差模型使用 Novatel GPS 接收器计算出的估计伪距方差不断更新,而不是应用最小二乘调整中典型的恒定先验伪距方差。这种动态范围误差模型有效地减少了观测到的误差与其预测的误差估计之间的统计偏差。改进的范围误差模型还显著提高了位置解的性能。修改后的软件计算的所有 DGPS 位置的定位精度均优于 0.5 米。
缺水是一个全球挑战,强调了有效水资源管理的重要性。太阳能剧照提供了一种经济有效的方法,可以将咸水转换为饮用水,但面临生产力的限制。本研究旨在通过使用不同的鳍材料和水深度修改来提高太阳静止生产率。使用计算流体动力学(CFD)模拟来评估四种情况下的热性能:在20 mm和40 mm的水深下的铜和铝鳍。分析了每种配置(MSS-I至MSS-IV)的关键参数,包括温度分布,摩擦量和流体速度。能量和驱动效率。与MSS-IV(8.02升),MSS-I(7.81升)和MSS-II(6.71升)相比,使用20 mm深度的MSS-III,表现出最高的每日生产率(8.33升)。MSS-III(60.10%)的能量效率最高,其次是MSS-IV(57.41%),MSS-I(55.22%)和MSS-II(52.18%)。MSS-III也表现出最高的充电效率(21.50%),MSS-I(17.15%),MSS-IV(16.43%)和MSS-II(14.12%)以后。这项研究强调了通过太阳剧照的特定设计修饰实现的热和能源效率的显着提高。MSS-III的较高性能归因于使用铜鳍和优化的深度,突出了材料选择和结构设计在提高太阳静止生产率方面的关键作用。这些发现对可持续水资源管理具有重要意义,强调了优化的太阳能仍然设计以应对水短缺挑战的潜力。
本文概述了最近的技术发展,这些技术提高了管理港口龙骨下间隙 (UKC) 的能力。大吃水船舶进入或离开深度受限港口时,如果不能准确确定其 UKC,可能会对安全、经济和环境造成严重影响。船长可以通过以下方式管理其船舶的 UKC:(1) 采取影响船舶动态吃水的行动(例如改变船速)和 (2) 安排其船舶按计划航线航行,以确保当船舶到达控制深度的位置时,有足够的水位供安全通行。但是,要做到这一点,他必须拥有沿途准确的实时和预测环境信息,以及一种经过验证的方法来预测其船舶在各种情况下的运动(以及动态吃水)。至少,这些信息必须包括准确的海图深度和水下危险、水位以及特定于船舶的航道动态吃水预测公式(基于船速、静态吃水和水深)。动态吃水计算可能还需要有关洋流、水密度和波浪、涌浪和/或围海冲击的信息。最近开发的可以为 UKC 管理提供必要信息的系统包括:现在预报/预报海洋模型系统(超越实时海洋系统的必要步骤);即时 GPS 系统,用于提供准确的船舶运动数据以校准动态吃水预测系统;现代水文测量系统(如浅水多波束和侧扫声纳系统);以及现代电子海图系统(及其支持的快速更新服务)。本文讨论了需要对这些系统进行哪些进一步改进才能使有效的 UKC 管理成为现实。
本文概述了最近提高港口管理龙骨下净空 (UKC) 能力的技术发展。对于进入或离开深度受限港口的大吃水船舶,如果不能准确确定其 UKC,可能会对安全、经济和环境造成严重影响。船长可以通过以下方式管理其船舶的 UKC:(1) 采取影响船舶动态吃水的行动(例如改变船速)和 (2) 安排其船舶按计划航线航行,以确保当船舶到达控制深度的位置时,有足够的水位供安全通行。然而,要做到这一点,他必须拥有沿途准确的实时和预测环境信息,以及一种经过验证的方法来预测其船舶在各种情况下的运动(以及动态吃水)。至少,这些信息必须包括准确的海图深度和水下危险、水位以及船舶特定航道的动态吃水预测公式(基于船速、静态吃水和水深)。动态吃水计算可能还需要有关水流、水密度、波浪、涌浪和/或围海冲击的信息。最近开发的可以为 UKC 管理提供必要信息的系统包括:即时预报/预报海洋模型系统(超越实时海洋系统的必要步骤);即时 GPS 系统,用于提供准确的船舶运动数据以校准动态吃水预测系统;现代水文测量系统(如浅水多波束和侧扫声纳系统);以及现代电子海图系统(及其支持的快速更新服务)。本文讨论了需要对这些系统进行哪些进一步改进,才能使有效的 UKC 管理成为现实。
港口特色 位于安大略湖畔,纽约州奥斯威戈县奥斯威戈市。 授权:1870、1907、1930、1940、1948、1954 和 1962 年《河流与港口法案》。 深吃水商业港口。 项目水深:湖泊进水航道 27 英尺;外港 25 英尺;奥斯威戈河下游航道 24 英尺;奥斯威戈河上游航道、东外港区和西外港区 21 英尺。 2021 年发运和接收物料 28.2 万吨。 与 7 个商业港口相连:从 7 个港口接收。 奥斯威戈河上有 280 英亩的外港和 3,000 英尺的联邦航道。 主要利益相关方:奥斯威戈港务局、美国海岸警卫队、NRG 能源、斯普拉格能源、拉法基水泥、Essroc 水泥和私人码头。项目要求 港口每 4 年需要疏浚约 72,000 立方码以维护航道。港口最后一次疏浚是在 2023 年,当时清除了 30,000 立方码的物质。 西箭头防波堤需要对几个严重损坏的部分进行重大修复。一些部分的增量修复已于 2018 年和 2019 年完成。其余部分的修复工程和设计已于 2023 年完成。后续施工计划于 2024 年至 2025 年进行,以修复剩余未修复的部分。
本文概述了最近提高港口管理龙骨下净空 (UKC) 能力的技术发展。对于进入或离开深度受限港口的大吃水船舶,如果不能准确确定其 UKC,可能会对安全、经济和环境造成严重影响。船长可以通过以下方式管理其船舶的 UKC:(1) 采取影响船舶动态吃水的行动(例如改变船速)和 (2) 安排其船舶按计划航线航行,以确保当船舶到达控制深度的位置时,有足够的水位供安全通行。然而,要做到这一点,他必须拥有沿途准确的实时和预测环境信息,以及一种经过验证的方法来预测其船舶在各种情况下的运动(以及动态吃水)。至少,这些信息必须包括准确的海图深度和水下危险、水位以及船舶特定航道的动态吃水预测公式(基于船速、静态吃水和水深)。动态吃水计算可能还需要有关水流、水密度、波浪、涌浪和/或围海冲击的信息。最近开发的可以为 UKC 管理提供必要信息的系统包括:即时预报/预报海洋模型系统(超越实时海洋系统的必要步骤);即时 GPS 系统,用于提供准确的船舶运动数据以校准动态吃水预测系统;现代水文测量系统(如浅水多波束和侧扫声纳系统);以及现代电子海图系统(及其支持的快速更新服务)。本文讨论了需要对这些系统进行哪些进一步改进,才能使有效的 UKC 管理成为现实。