Eni UK Limited的最终母公司是Eni Spa,是通过其ENI Group Affiliate LBA CCS Ltd. LBA CCS Ltd的联盟的领先合作伙伴。该开发的环境声明的日期为2024年2月(参考号ES/2022/009)。该开发的基本性质是基础架构的重新修复,安装和调试以及利物浦湾二氧化碳(“ CO 2”)的运输,注入和存储的井和基础架构的运营和维护,在利物浦湾的二氧化碳(CO 2”)耗尽的石油和天然气储藏厂耗尽了含碳氧化物的储藏室中的含量。开发涵盖了英国,离岸许可的块110/13A,110/13B,110/14A,110/14C和110/15A。整个开发区域的水深高度可变,范围从0.72 m到35 m,平均水深低于最低天文学潮汐。该开发项目位于威尔士海岸线以北约12公里,在英国海岸线以西2公里。到最近的国际中位线(英国/爱尔兰)的距离为60 nm。lba CCS Ltd打算从AYR(POA)气体终端的现有海上天然气进口管道重新使用,以成为向道格拉斯碳捕获和存储(CCS)平台运输CO 2的出口管道,并将其往返汉密尔顿主机,汉密尔顿北部,汉密尔顿北部,汉密尔顿北部和Lennox平台,以供置于deplecection deplecection deplecection depleceper depleted osection depleted osection。该项目完全位于威尔士和英国领土的12 nm限制之内。可以总结开发,如下所示:a)安装新的道格拉斯CCS平台来替换现有的道格拉斯进程平台。这将从陆上POA终端接收CO 2,并通过现有的燃气管道将CO 2分发给汉密尔顿Main,Hamilton North和Lennox Wellhead平台; b)在25年内,使用现有的汉密尔顿Main,汉密尔顿北部和伦诺克斯水库用于注入109吨CO 2的CO 2; c)注射和监测井的钻井和重新完成现有生产井; d)安装新的管道部分,以将新的道格拉斯CCS平台和现有的海底天然气管道连接起来; e)在汉密尔顿主,汉密尔顿北部和Lennox Wellhead平台上安装新的顶部; f)安装两条潜艇33KV电源电缆,并具有从POA终端陆上到修改的道格拉斯平台的集成光纤电缆连接,以及与三个卫星平台的连接; g)根据相关的监管要求,在CO 2注入期间和之后对LBA CCS存储站点进行监视和管理。该基础设施已在环境声明中的开发时间表中进行了评估,计划的活动时间表如下:a)新的道格拉斯CCS平台的安装将在大约两个月的时间内与新的夹克,桩和上衣一起开始,并在第22277季度的新夹克,桩和顶层开始; b)从Q3/Q4 2024到Q4 2026的注射,监视和哨兵井的钻孔,侧面跟踪和重新完成; c)拆除现有的卫星平台顶部,并在第二季度/Q3 2027期间替换了新的卫星平台; d)电缆铺设并从Q3 2025到Q2 2026进行操作; e)在Q2/Q3 2027期间,电缆绑在CCS平台上; f)在第4季度2027中首次注射CO 2。
5 有限元方法 53 5.1 简介 53 5.2 基本原理 53 5.3 一维模型 54 5.4 二维模型 55 5.4.1 二维深度积分模型 55 5.4.2 二维横向积分模型 56 5.5 三维模型 57 5.6 特征-Galerkin 方法 58 5.6.1 离散方程的公式 58 5.6.2 两步算法 61 5.6.3 基于特征的方法 62 5.6.4 保守的流体动力学和质量传输方程 64 5.6.5 对流主导问题的精度分析 66 5.7 数值方案的验证 68 5.7.1 高斯丘陵的纯对流 69 5.7.2 高斯丘陵的纯旋转山丘 70 5.7.3 平面剪切流中的平流扩散 71 5.7.4 潮流中的连续源 73 5.7.5 具有二次底部水深的矩形水道中的长波 74 5.8 优点和缺点 76 5.9 原型应用 I:海水养殖管理 77 5.9.1 吐露港的概述 77 5.9.2 动态稳态模拟:M2 潮汐强迫 79 5.9.3 七天的真实潮汐模拟(42 个潮汐分水岭) 81 5.10 原型应用 II:填海对潮流的影响 83 5.10.1 维多利亚港的概述 83 5.10.2 M2 潮汐强迫的水动力学模拟 83 5.10.3 四个主要潮汐分水岭的真实潮汐模拟 86 5.10.4填海工程的效果 86 5.11 结论 89
本文概述了最近提高港口管理龙骨下净空 (UKC) 能力的技术发展。对于进入或离开深度受限港口的大吃水船舶,如果不能准确确定其 UKC,可能会对安全、经济和环境造成严重影响。船长可以通过以下方式管理其船舶的 UKC:(1) 采取影响船舶动态吃水的行动(例如改变船速)和 (2) 安排其船舶按计划航线航行,以确保当船舶到达控制深度的位置时,有足够的水位供安全通行。然而,要做到这一点,他必须拥有沿途准确的实时和预测环境信息,以及一种经过验证的方法来预测其船舶在各种情况下的运动(以及动态吃水)。至少,这些信息必须包括准确的海图深度和水下危险、水位以及船舶特定航道的动态吃水预测公式(基于船速、静态吃水和水深)。动态吃水计算可能还需要有关水流、水密度、波浪、涌浪和/或围海冲击的信息。最近开发的可以为 UKC 管理提供必要信息的系统包括:即时预报/预报海洋模型系统(超越实时海洋系统的必要步骤);即时 GPS 系统,用于提供准确的船舶运动数据以校准动态吃水预测系统;现代水文测量系统(如浅水多波束和侧扫声纳系统);以及现代电子海图系统(及其支持的快速更新服务)。本文讨论了需要对这些系统进行哪些进一步改进,才能使有效的 UKC 管理成为现实。
研讨会指导委员会 Joe Braun,核工程项目经理,阿贡国家实验室 Mik Else,安全研究工程师,DOI/BSEE Dan Fraser,能源工程和系统分析,阿贡国家实验室 Frank Gallander,海底油井干预,雪佛龙 Holly Hopkins,高级政策顾问,美国石油学会 Steve Kropla,集团副总裁—运营和认证,国际钻井承包商协会 (IADC) Jim Raney,工程和技术总监,阿纳达科石油公司 Kumkum Ray,高级监管专家,DOI/BSEE Brian Skeels,新兴技术总监,FMC Technologies Inc. Alan Summers,海底部门总监,Diamond Offshore Drilling, Inc.会议主席 会议 1:使用地面防喷器进行井控 主席:Brian Skeels,FMC Technologies Inc. 联合主席:David Young,雪佛龙 会议 2:使用海底防喷器进行井控 主席:Frank Gallander,雪佛龙联合主席:Tony Hogg,ENSCO 第三节:钻井和完井设计及障碍 主席:Jim Raney,阿纳达科石油公司 联合主席:Ken Armagost,阿纳达科石油公司 第四节:不同水深的事故前规划、准备和响应 主席:Alan Summers,Diamond Offshore Drilling,Inc. 联合主席:Dan Sadenwater,雪佛龙 第五节:事故后遏制和井控 主席:Holly Hopkins,美国石油协会 联合主席:Charlie Williams,壳牌能源资源公司第六节:关键操作和活动的风险评估 主席:Dan Fraser,阿贡国家实验室 联合主席:Steve Kropla,IADC
NAVSEA 标准项目 FY-27 项目编号:009-069 日期:2024 年 10 月 1 日 类别:I 1。范围:1.1 标题:恶劣天气/系泊计划;提供 2.参考文献: 2.1 845-6686999 美国海军舰艇水深、系泊和船体/附属物过境和停泊间隙要求 2.2 DDS 582-1,设计数据表,系泊系统计算 2.3 S9086-TW-STM-010/CH-582,系泊和拖带 2.4 UFC 4-159-03,系泊设计 3.要求: 3.1 建立并维护必须在强风、暴风雨、飓风和破坏性天气期间实施的书面恶劣天气计划,包括根据 2.1 和 2.2 进行系泊计算,以 2.3 和 2.4 为指导。必须将记录的恶劣天气计划提交给主管进行文件审查和验收。承包商必须根据本 NAVSEA 标准项目,在可用性开始日期前 15 天内制定一份可接受的记录的恶劣天气计划。在整个合同期间,恶劣天气计划必须接受主管的定期合规性审核。3.1.1 在发生更新或更改的计划时,向主管提交。3.2 确保计划指定责任并实施防止海军舰艇、船只、驳船和驳船受损的程序。这包括船只、船只、驳船和驳船实际位于私人承包商工厂的时期;在海军设施的船舶、船只、驳船和驳船上工作需要打开船体或甲板时;以及当承包商拥有/提供的浮动设备与船舶、船只、驳船和驳船绑在一起时。3.2.1 该计划必须包含在下列天气条件下要采取的具体职责和详细行动。
摘要:使用 42 个系泊设备的温度和速度测量值来研究非线性内孔在穿过加利福尼亚中部内陆架时沿岸的变化。系泊设备于 2017 年 9 月至 10 月部署在 Point Sal 岬角近海。区域覆盖范围为 ; 沿岸 30 公里和 ; 沿岸 15 公里,跨越 9-100 米水深。除了调节区域分层的潮下过程外,内孔还产生了复杂的时空分层变异模式。在 50 米等深线处,内孔沿岸连续,长度约为数十公里,但锋面连续性的长度尺度在 25 米等深线处减小到 O(1 公里)。发现深度平均、带通滤波(从 3 分钟到 16 小时)的内部钻孔动能 (KE IB ) 沿钻孔前沿是不均匀的,即使是沿岸连续钻孔也是如此。沿钻孔 KE IB 变化的模式因每个钻孔而异,但 2 周平均值表明 KE IB 在 Sal 点附近通常最强。钻孔前方的分层影响钻孔的振幅和沿岸演变。数据表明,沿岸分层梯度可能导致钻孔在不同的沿岸位置以不同的方式演变。观察到三种潜在的钻孔命运:1) 钻孔完整地过渡到 9 米等深线,2) 钻孔被更快的后续钻孔超越,导致钻孔合并事件,以及 3) 当上游跃层接近或低于中间深度时,钻孔消失。每个系泊处每小时的分层图和连续钻孔的估计位置表明,单个内部钻孔可显著影响后续钻孔的波导。
NAVSEA 标准项目 FY-24 项目编号:009-69 日期:2022 年 10 月 25 日 类别:I 1。范围:1.1 标题:恶劣天气/系泊计划;提供 2.参考文献: 2.1 845-6686999 美国海军舰艇水深、系泊和船体/附属物过境和停泊净空要求 2.2 DDS 582-1,设计数据表,系泊系统计算 2.3 S9086-TW-STM-010/CH-582,系泊和拖带 2.4 UFC 4-159-03,系泊设计 3.要求: 3.1 维护必须在强风、暴风雨、飓风和破坏性天气期间实施的书面恶劣天气计划,包括根据 2.1 和 2.2 进行的系泊计算,以 2.3 和 2.4 为指导。必须将记录的恶劣天气计划提交给监理方进行文件审查和验收。承包商必须根据本标准项目,在可用性开始日期前 15 天内制定一份可接受的记录的恶劣天气计划。在整个合同期间,恶劣天气计划必须接受监理方的定期合规性审核。3.1.1 在发生更新或更改的计划时,向监理方提交。3.2 确保计划指定责任并实施防止海军舰艇、船只、驳船和驳船受损的程序。这包括船舶、船只、驳船和驳船实际位于私人承包商工厂的时期;在海军设施对船舶、船只、驳船和驳船进行工作需要打开船体或甲板的时间;以及当承包商拥有/提供的浮动设备与船舶、船只、驳船和驳船绑在一起时。3.2.1 该计划必须包含在下列天气条件下应采取的具体责任和详细行动。
研讨会指导委员会 Joe Braun,核工程项目经理,阿贡国家实验室 Mik Else,安全研究工程师,DOI/BSEE Dan Fraser,能源工程和系统分析,阿贡国家实验室 Frank Gallander,海底油井干预,雪佛龙 Holly Hopkins,高级政策顾问,美国石油学会 Steve Kropla,集团副总裁—运营和认证,国际钻井承包商协会 (IADC) Jim Raney,工程和技术总监,阿纳达科石油公司 Kumkum Ray,高级监管专家,DOI/BSEE Brian Skeels,新兴技术总监,FMC 科技公司 Alan Summers,海底部门总监,Diamond Offshore Drilling, Inc. 会议主席 会议 1:使用地面防喷器进行井控 主席:Brian Skeels,FMC 科技公司 联合主席:David Young,雪佛龙 会议 2:使用海底防喷器进行井控 主席:Frank Gallander,雪佛龙 联合主席:Tony Hogg,ENSCO第三节:钻井和完井设计与屏障 主席:Jim Raney,阿纳达科石油公司 联合主席:Ken Armagost,阿纳达科石油公司 第四节:不同水深的事故前规划、准备和响应 主席:Alan Summers,Diamond Offshore Drilling,Inc. 联合主席:Dan Sadenwater,雪佛龙 第五节:事故后遏制和井控 主席:Holly Hopkins,美国石油学会 联合主席:Charlie Williams,壳牌能源资源公司 第六节:关键操作和活动的风险评估 主席:Dan Fraser,阿贡国家实验室 联合主席:Steve Kropla,IADC
港口特征 位于俄亥俄州凯霍加县克利夫兰市的伊利湖畔。 授权:1875、1886、1888、1902、1917、1935、1945、1946、1958、1960、1962 年河流与港口法案;1976 年和 1986 年水资源开发法案;1985 年补充拨款法案;以及 1988 年能源与水资源拨款法案。 深吃水商业港口。 项目水深在入口航道为 29 英尺,在东和西盆地分别为 27 和 28 英尺,在东部外港为 25 英尺,在凯霍加河下游和旧河为 27 英尺,在凯霍加河剩余部分为 23 英尺,在回旋盆地为 18 英尺。 2021 年装运和接收了 1240 万吨物料。 与 34 个商业港口相连:向 12 个港口发货,从 19 个港口接收,向 3 个港口发货和接收。 超过 5.5 英里的防波堤结构 凯霍加河上有 5.8 英里的联邦水道,老河上有 1 英里的联邦水道。 密闭处置设施 (CDF) 位于港口入口以东。 主要利益相关者:克利夫兰-凯霍加县港务局、伯克湖滨机场、美国海岸警卫队、克利夫兰-克利夫斯、克利夫兰消防局、沥青产品、嘉吉除冰技术、Carmeuse Lime & Stone、凯霍加混凝土公司、Essroc 水泥公司、Federal Marine Terminals Inc.、Fleet Supplies Inc.、拉法基北美、马拉松石油、Mid-Continent Coal &
海洋碳储存是大气CO 2的主要水槽之一,被认为是过去冰川期间CO 2缩减的主要因素。物理和生物地球化学过程都控制着海洋中碳储存的能力。在更新世的冰川期间,大西洋南半球起源的大量深水群体已显示出可促进南大洋中的碳存储。但是,几乎没有研究过印度洋水质量的纬度延伸。在这项研究中,我们结合了印度洋西南部两个沉积物岩心的有孔虫εnd和底栖δ13c(MD96-2077,33°S,3781 m的水深度; MD96 - 2052,19o s,2627 m水深),以范围的范围内的既有型号又有范围的范围。最后630 Kyr。有孔虫εND和底栖δ13c的联合使用允许区分与水质量混合和水质量中的碳积累相关的δ13c变化。营养丰富的深水无法用南部采购水的比例增强来解释,在冰川时期内,核心地点比2700 m深,至少延伸至33°°s进入印度海洋。从海洋同位素阶段(MIS)14到MIS 10,冰川碳的存储逐渐增加,直到在极端冰川时期达到其最高容量MIS 12和10。轨道强迫(100公斤偏心,41千钟倾斜),限制性空气交换和增强的海洋分层,在相对较低的偏心率和倾斜的时期内促进了较高的碳储存。此外,在MIS 10之后,在底栖δ13c和δ13c和δ18o核心MD96 - 2077的记录中观察到从100千克偏心率到41千摩尔的倾斜循环,并且Sea-Ice覆盖了从Agulhas Plachap plaplaup plapplas corepore Core核心位置的Sea-Ice覆盖变化。