摘要:可充电铝离子水系电池(AIAB)因其经济、丰富、环保和安全优势,正在成为大规模电池系统的新兴竞争者。然而,由于天然氧化物屏障的形成,金属铝的高容量仍未得到开发。通过用离子液体混合物处理铝金属来去除氧化物解决了这个问题,但这种处理过的铝(TAl)在影响全电池性能方面的作用尚不完全清楚。同时,在铝金属上涂覆的涂层的稳定性和兼容性在全电池装配线中的长期处理中仍未得到探索。在这里,我们在全电池 AIAB 的背景下探讨了 TAl 的上述两个方面。首先,一种高度稳定的正极材料 NMnHCF 被证明可以通过从单斜相可逆地转变为四方相来成功存储铝离子。据报道,其高能量密度超过了以前的等效报告。其次,揭示了电解质-TAl 配对的组合显着影响整体电池性能;其中电解质电导率会影响铝电镀/剥离过电位,进而决定整体电池性能。我们还证明,TAl 上的氯化涂层在环境大气下至少可稳定 40 小时,并可防止电池制造和电化学循环过程中铝金属块再次氧化。
我们展示了如何分别培训算法思维和程序的第一步。没有假定学习者有任何先前的经验。在实践中描述并测试了两名10年级学生的一般框架和一系列培训任务。都能够在两天内使用笔和纸编写相对复杂的程序。要训练算法思维,将计算问题作为游戏提交给学习者。粗略地说,获胜的策略对应于解决该问题的算法。因此,如果学习者在各种情况下始终如一地赢得游戏,则表明他们找到了算法。我们描述了将计算问题转化为这样的游戏的一般机制。对于编程部分,向学习者展示了如何从跟踪构建程序。程序是用简单的语言指定的,该语言取决于计算的基本模型(考虑图灵机,倒计计算机或构造设置架构);这样的模型可以看作是概念机。
使用两种硅烷(((3-氨基丙基) - 三乙氧基菌)和(3-甲基丙基) - 三乙氧基硅烷)进行官能化,以分别获得生态友好型胺功能化的GO(GONH)和硫醇功能功能(GOSH)。两个硅烷也被一起使用,以获得胺 - 硫醇双官能化的GO(GOSN)。获得了各种物理化学特征,包括使用傅立叶转换红外(FTIR)光谱仪,热重分析仪和X射线衍射仪的光谱。吸附剂用于对水溶液中Cr吸附的比较研究。将所获得的数据拟合到伪优先(PFO)和伪秒阶(PSO)模型,均质分形伪秒(FPSO)以及Weber-Morris - 莫里斯 - 摩尔斯 - 摩尔斯 - 莫里斯(Weber-Morris)内膜内颗粒扩散(IPD)动力学模型。计算了Langmuir和Freundlich吸附等温模型以及热力学的模型参数。表征结果显示成功的功能化。GONH,GOSH和GOSN分别在水中表现出碱性,酸性和中性pH。胺和硫醇官能团,以及降低的顺序。吸附剂比原始GO具有更高的每单位重量密度,并且热稳定性更好。平衡Cr吸附。PSO和FPSO更好地描述了速率数据。随着溶液的pH含量,Cr吸附降低;最佳吸附在pH 2处记录。吸附过程是理论上的放热过程,即自发过程。平衡吸附数据拟合了GONH的Langmuir吸附等温线模型,而它为GOSH和GOSN拟合了Freundlich。这些吸附剂的Cr吸附能力分别为114、89.6和173 mg/g,分别为GONH,GOSH和GOSN,并且这些吸附能力比几种报道的基于石墨烯的吸附剂要好,并提出了这些吸附剂的潜力。©2020水环境联合会