Allonnia 将带领大家参观表面活性泡沫分馏 (SAFF®) 系统,这是一种简单、独立的 PFAS 去除解决方案。泡沫分馏是一种吸附气泡分离技术,可以从水溶液中去除 PFAS 等两亲性化学物质。两亲性物质往往会吸附在上升气泡的表面(即空气-水界面),SAFF® 利用这一点,打造可持续、几乎无浪费的 PFAS 解决方案。第一阶段 SAFF®(初级分馏)利用从大气中吸入的空气从流入水中“剥离”PFAS,并产生不含 PFAS 的流出物,其处理目标是满足 EPA 对 PFAS 的新最大污染物水平 (MCL)。含有浓缩 PFAS 的初级泡沫物构成第二阶段(二次分馏)的进料,该阶段将泡沫物浓缩至 5,000:1 以上的倍数(超浓缩)。如果需要进一步浓缩,可以生产浓缩倍数超过 200,000:1 的 PFAS 超浓缩物。超浓缩物或超浓缩物代表低容量、高浓度的 PFAS 水溶液
这项研究的目的是检查被用作五种潜在危险的偶氮染色的吸附剂的可能性,以从水溶液中取出。通过实验和计算DFT以及蒙特卡洛方法研究了AZO-DYES去除的GO的吸附特征。实验研究包括吸附剂剂量,接触时间和初始浓度的影响,而计算研究涉及DFT和Monte Carlo(MC)模拟。通过探索了通过搜索最低的可能性吸附复合物来通过MC预测,通过DFT研究进行了地理,电子和热力学参数的地理,电子和热力学参数。通过Langmuir模型评估实验数据,以描述平衡等温线。均衡数据非常适合Langmuir模型。热力学参数,即自由能的变化,焓变和熵变化表明,通过在GO分子筛子表面上吸附来去除偶氮-DYES是自发的。发现该过程的性质是涉及非共价相互作用的物理吸附。这项研究揭示了GO可以用作有效的吸附材料,用于从水溶液中吸附偶氮-DYES。
工程高压水溶液电池(AAIBS)Erhai Hu,Bei-er Jia,Qiang Zhu,Qiang Zhu,Jianwei Xu,Xian Jun Loh,Jian Jun Chen,Jian Chen*,Hongge Pan,Qingyu Yan* E. Hu* E. Hu,Q. Alexyan@ntu.edu.sg B.-E. Nanyang Technological University,639798,新加坡Q. Q. 627833,新加坡
生物相容性,除了提供持续的药物释放和最佳药物生物利用度。1,2纳米重沉淀,也称为界面沉积或溶剂位移,是纳米颗粒(NP)制造的最多采用的技术之一,由于其简单性,良好的可重复性,可扩展性的易用性,可扩展性以及产生较小尺寸的小NP的可行性,尺寸较窄。3,4从溶剂系统中所需的成分(聚合物/药物)的降水或相位分离被认为是使用这种方法进行NP制造的典型过程。5 - 7,而相分离可以通过溶剂中的任何物理变化(反应系统的任何物理变化)诱导,例如温度,pH或组件溶解度的任何变化。3,4,8,9我们选择了常用的溶剂/反溶剂系统来探索药物溶解度和PLGA过饱和对药物被纳米颗粒捕获的能力的作用。使用这种纳米沉淀方法制造药物加载的PLGA NP,需要将PLGA和药物溶解在水上可见的有机溶剂中,然后将其与水溶液(水/水/水溶液)彻底混合,以实现取代状态并诱导PLGA沉淀。3,6,10
本研究项目旨在开发一种安全有效的大量 HCDS 液体处理方法。所提出的方法是一个两阶段过程,包括在水中直接水解 HCDS 液体,然后用氢氧化钾 (KOH) 水溶液对水悬浮液中的水解产物进行碱性裂解。在第一阶段,HCDS 液体直接在水中水解。所需的 HCDS 与水的重量比为 1:25。在水解过程中,反应温和,不会产生明显烟雾。在水中水解的液体 HCDS 水解沉积物的红外光谱中仅在 915 cm -1 处观察到一个新峰,这可能归因于簇中存在小的氧化硅分子。经确定,与在潮湿空气中形成的其他水解沉积物不同,在水中形成的液体 HCDS 水解沉积物在环境条件下易与碱性溶液反应,同时释放氢气。在第二阶段,加入 KOH 水溶液 (20 wt%) 以中和悬浮液。KOH 与 HCDS 所需的重量比为 2:1,最终 pH 值约为 12.6。残留沉积物在两小时内完全溶解。关键词:六氯乙硅烷、HCDS、水解沉积物、冲击敏感、处置。
脂质纳米粒 (LNP) 是一种新兴的药物制剂,可包覆核酸和蛋白质等生物分子,以及由两者制成的复合物 [ 1 – 3 ]。LNP 呈球形,在电子显微镜下可见。治疗性 LNP 的直径小于 100 纳米,由脂质和核酸等有效载荷组成。LNP 的最初想法源于脂质体,这是一种由磷脂和胆固醇制成的简单得多的脂质囊泡,体积比 LNP 大。脂质体是根据脂质双层理论基于细胞膜建模的。脂质体已用于研究水溶液中脂质的物理化学,并已研究其未来临床用途。为了制备脂质体,通常用旋转蒸发器干燥脂质,悬浮在水溶液中,然后用超声处理以获得呈乳状悬浮液的多层囊泡。现代的 LNP 更加复杂,主要由四种不同的脂质制成(表 1)。LNP 的制备程序可能与这些类似,但根据最近的研究结果进行了优化 [ 4 ]。在 LNP 制备过程中,脂质和 RNA 分别溶解在乙醇和酸性水溶液中。接下来,它们用工业用的自动化微流体设备或研究用的移液器混合。然后,通过透析去除乙醇。在大多数工业应用中,需要进行几种色谱纯化程序来提高最终 LNP 产品的真实性。根据 RNA 包封率、LNP 的直径、其 Zeta 电位和其他生物物理参数来检查最终的 LNP 成分。Zeta 电位表示 LNP 的稳定性。为了优化这些获得的参数,使用多分散性指数 (PDI) 来测量包括 LNP 在内的大分子的异质性;小于 0.1 的值通常被认为是优化条件。在配制 LNP 时,脂质的使用量远远超过 RNA(重量比约为 10:1)。
在本文中,NFT水培培养原型是由营养注射控制系统开发的,该系统含有水溶液,该溶液将nft水培农作物的生产剂作为生产的食品需求,以替代食品需求的生产替代品,以用水溶液为作物代替土地。 div>通过人造视觉系统使用的一个人造视觉系统通过受过培训的神经网络增强,以识别整个生产批的植物的生长阶段,以便建立水溶液的适当营养水平,该价值使封闭的环路控制系统可以参考,从而使不受欢迎的系统调节pH的pH,直到通过pH的水平,直到通过pH,包括在pH中,包括在pH中,包括pH,包括在pH中,包括在pH中,包括在pH中纳入pH。水 div>获得的结果允许对水pH值进行精确调节,除了93.33 \%的成熟时间和收获时间时,在生菜生长的所有阶段的范围为5.5-6.5范围为5.5-6.5。 div>这允许具有可持续的培养系统,该系统通过再循环和垂直培养结构来优化营养和土壤的使用,以及在需要调节时激活系统来减少能源消耗。 div>
研究项目简介:间歇性是广泛采用风能和太阳能等可再生能源的主要障碍。该项目旨在开发由水溶液组成的可充电锌溴电池,用于安全且低成本的储能。太阳能电池板产生的电能将用于给电池充电,之后可在放电过程中按需释放。参与的学生将参与设计电池的关键组件,包括电解质、电极和隔板,以及制造和优化电池。