谷物重量是决定米饭和其他谷物作物单植物产量产生的主要因素之一。研究已开始揭示晶粒重量和晶粒尺寸的调节机制,突出了这项研究对植物分子生物学的重要性。晶粒重量的发育特征受到多个分子和遗传方面的影响,这些方面导致细胞分裂,扩张和分化的动态变化。此外,几种重要的生物学途径有助于晶粒重量,例如泛素化,植物激素,G蛋白,光合作用,表观遗传修饰和microRNA。我们的评论综合了早期和最新的发现,并为对谷物重量的更全面了解如何优化提高产量产量的策略提供了未来的观点。令人惊讶的是,获得的知识并未揭示出对基本分子机制的更多见解。加速大米和其他谷物的分子育种正在成为农艺学家的一项紧急和至关重要的任务。最后,我们强调了利用基因编辑技术以及为未来水稻育种应用的结构研究的重要性。
摘要 逆转座子是一类可移动的遗传元件,能够通过逆转录 RNA 中间体进行转座。水稻品种日本晴在第 7 号染色体上(Tos17 Chr.7)和第 10 号染色体上(Tos17 Chr.10)含有两个几乎相同的 Tos17 基因组拷贝,Tos17 是一个内源的 copia 样 LTR 逆转座子。前期研究表明,在组织培养过程中,只有 Tos17 Chr.7 具有转座活性。Tos17 Chr.7 已被广泛用于插入诱变,作为水稻基因功能分析的工具。然而,在水稻转化过程中,Tos17 Chr.7 转座可能会产生具有不良性状的体细胞突变,从而影响转基因的评估或应用。本研究利用 CRISPR/Cas9 基因编辑系统构建了一个 Tos17 Chr.7 敲除突变体 D873。 Tos17 Chr.7 在D873上的基因编辑等位基因被命名为Tos17 D873 ,该基因在Tos17 Chr.7的pol基因上有一个873bp的DNA缺失,从而导致GAG-整合酶前结构域和整合酶核心结构域的缺失。虽然Tos17 D873的转录在D873愈伤组织中被激活,但在再生的D873植株中没有检测到Tos17 D873的转座。结果表明GAG-整合酶前结构域和整合酶核心结构域是Tos17 Chr.7转座所必需的,且这两个结构域的缺失不能被水稻基因组中的其他LTR逆转录转座子补充。由于 Tos17 Chr.7 衍生的体细胞克隆诱变在 D873 植物中被阻断,因此 Tos17 D873 等位基因的产生将有助于生产转基因水稻植物,以进行基因功能研究和遗传工程。类似的方法可用于在作物育种中失活其他逆转录转座子。
胞嘧啶和腺苷碱基编辑器(CBE和ABE)在植物中得到了广泛的应用,极大地促进了基因功能研究和作物育种。目前的碱基编辑器可以实现高效的A到G和C到T/G/A的编辑。然而,高效且可遗传的A到Y(A到T/C)编辑仍有待在植物中开发。本研究构建了一系列适用于单子叶植物和双子叶植物的A到K碱基编辑器(AKBE)系统。此外,用无PAM的Cas9变体(nSpRY)替换nSpCas9,以扩大AKBE的靶向范围。利用 18 个内源基因座上的 AKBE 编辑的 228 株 T 0 水稻和 121 株 T 0 番茄植物的分析表明,除了高效的 A 到 G 替换(平均 41.0%)之外,植物 AKBE 还可以实现 A 到 T 的转换,在水稻和番茄中的效率分别高达 25.9% 和 10.5%。此外,水稻优化的 AKBE 在水稻中产生 A 到 C 的转换,平均效率为 1.8%,揭示了植物优化的 AKBE 在创造遗传多样性方面的重要价值。虽然大多数 A 到 T 和 A 到 C 的编辑是嵌合性的,但所需的编辑类型可以传递给 T 1 后代,类似于传统 ABE8e 产生的编辑。此外,利用AKBEs靶向酪氨酸(Y,TAT)或半胱氨酸(C,TGT)实现了引入靶基因的早期终止密码子(TAG/TAA/TGA),展示了其在基因破坏中的潜在用途。
缩写……………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………执行摘要…………………………………………………………………………………………………………………………………………………………项目概述和一般保障措施……………………………………8 1。i ntroduction………………………………………………………………………………………………………………………………s ubproject s Cope……………………………………………………………………………………………………………………………………………scial s Afeguard,l and a Cociention r等待和r Esettlement P lans……...........................................................................m portering r等式……………………………………………………………………………………………………………………………………………………………………………………………………………社交保障绩效监控…………………………………………………………16 1。physical p rogress的实施中的s ubprojects……………………………………………………………………………………c offectation s tatus tatus fffected a ssets………………………………………………………………………………………………………………………………l ivelihens Restoration或e nhanced…………………………………………………………………………………………17 iv。信息披露,咨询和参与…………………………17 1。p ublic c on ulting和d iSclusion………………………………………………………………………………………………………………f the public c onsultation and i Ssues d Iscused……………………………………………………………………………………d ddr…………………………………………………………………………………………………………………………………。18 V.申诉机制……………………………………………………………………………………………………机构安排……………………………………………………………………遵守贷款契约……………………………………………………………………………………………………结论和建议……………………………………………………………………26 IX。附件………………………………………………………………………………………
进化枝是指由分子系统发育学中共同祖先(蛋白)衍生的后代(蛋白质)组成的人群。尽管许多被子植物大约有10 rbOH,但包括拟南芥在内的多核植物的rbohb以及草的rbohb和rbohhh均被归类为相同起源的蛋白质种群。 [纸信息]杂志名称:植物生理纸标题:CDPK5和CDPK13通过控制RBOH介导的ROS产生的ROS产生(CDPK5和CDPK13)在适应低氧(CDPK5和CDPK13)中起关键作用(CDPK5和CDPK13)在水稻中通过控制RBOH介导的反应性氧气的反应在水稻中起重要作用。
大米是加纳的流行主食,对于许多人来说,对寄生和生计至关重要。但是,气候变化和其他因素的联系导致水稻产量下降。该研究是为了调查水稻农民对加纳气候智能农业(CSA)技术的看法和采用。使用横截面调查,通过多阶段抽样方法选择了中部地区的319名水稻农民。使用描述性和推论统计来分析数据。结果表明,水稻农民对CSA技术有积极的看法,将他们与收入增加并提高产量相关联。稻农通常使用的关键CSA技术正在种植改善的品种,适当的肥料使用和托儿所管理。CSA采用的决定因素包括农业经验,农场规模,扩展访问,次要职业和农民团体成员资格。教育,农业经验,家庭规模,农民团体会员资格以及使用综合的害虫管理会对收入产生重大影响。性别,家庭规模,农场规模,次要职业和作物多样化作为水稻产量的决定因素。但是,农业投入和土地不足的高成本阻碍了他们的采用。政府应加强天气监测系统,并轻松地访问农民的准确和最新天气预报。应该增加对农业推广服务的投资,以教育农民使用气候智能技术。这项研究通过经验基础,当地情境化和实际见解丰富了全球气候变化文献,从而促进了水稻农民的气候智能农业采用。
稻米是亚洲许多社区非常重要的作物。它不仅是大多数人的主食,也是亚洲文化和社会的重要组成部分。稻米生产大多仍由自给自足的小农户负责。农村地区大多数农业劳动力的生计都与稻米生产或多或少地相关。稻米的品种繁多,从旱地稻米到可以在沿海地区种植的品种。从印度到印度尼西亚,从中国到菲律宾,很容易找到 40,000 多个稻米品种,全球 90% 以上的稻米是在亚洲生产和消费的。尽管米饭被视为一种营养丰富的食物,但它缺乏维生素 A 或其前体 β-胡萝卜素等微量营养素。因此,人们通常将米饭与蔬菜或肉类蛋白质等配菜一起食用,以补充富含米饭的饮食中微量营养素的缺乏。 1999 年,一群由 Ingo Potrykus 博士领导的欧洲科学家试图通过开发含有 β-胡萝卜素的转基因水稻来改变这一现状,
肉质果实形状是影响水果使用和消费者偏好的重要外部品质性状。因此,改变果实形状已成为作物改良的主要目标之一。然而,人们对果实形状调控的潜在机制了解甚少。在本综述中,我们以番茄、黄瓜和桃子为例,总结了肉质果实形状调控遗传基础的最新进展。比较分析表明,OFP-TRM(OVATE 家族蛋白 - TONNEAU1 募集基序)和 IQD(IQ67 结构域)通路可能在调节果实形状方面有所保留,它们主要通过调节肉质果实物种之间的细胞分裂模式。有趣的是,发现 FRUITFULL(FUL1)、CRABS CLAW(CRC)和 1-氨基环丙烷-1-羧酸合酶 2(ACS2)的黄瓜同源物可调节果实伸长。我们还概述了拟南芥和水稻中 OFP-TRM 和 IQD 途径介导的果实形状调控的最新进展,并提出 OFP-TRM 途径和 IQD 途径通过整合植物激素(包括油菜素类固醇、赤霉酸和生长素)和微管组织来协调调节果实形状。此外,还展示了 OFP、TRM 和 IQD 家族成员的功能冗余和分歧。本综述概述了目前关于果实形状调控的知识,并讨论了未来研究中需要解决的可能机制。
抽象转座元素(TES)是基因组变异性的重要来源。在这里,我们通过使用来自Oryza Sativa SSP的208个品种的表达数据来分析了它们对水稻基因表达变异性的贡献。indica和O. sativa ssp。Japonica亚种。我们的数据表明,插入与许多已知是水稻驯化和育种靶标的表达的变化有关。这些插入的重要部分已经存在于大米野生群中,并且在Indica和Japonica水稻种群中被差异化。总的来说,我们的结果表明,由TE诱导的信号转导基因中的表达变化很小,伴随着水稻种群的驯化和适应。
摘要:CRISPR-Cas 基因编辑技术提供了精确修改作物的潜力;然而,由于组织培养过程冗长且基因型特异性,体外植物转化和再生技术存在瓶颈。理想情况下,植物体内转化可以绕过组织培养,直接产生转化植物,但有效的植物体内传递和转化仍然是一个挑战。本研究探讨了有可能直接改变生殖系细胞的转化方法,从而消除了体外植物再生的挑战。最近的研究表明,装载质粒 DNA 的碳纳米管 (CNT) 可以扩散穿过植物细胞壁,促进外来遗传元件在植物组织中的瞬时表达。为了测试这种方法是否是植物体内转化的可行技术,利用带有报告基因的叶片和离体胚浸润,将 CNT 介导的质粒 DNA 传递到水稻组织中。定量和定性数据表明,CNT 有助于质粒 DNA 在水稻叶片和胚胎组织中的传递,从而导致 GFP、YFP 和 GUS 的瞬时表达。还利用靶向八氢番茄红素去饱和酶 (PDS) 基因的 CRISPR-Cas 载体开展实验,将 CNT 传递到成熟胚胎中,以创建可遗传的基因编辑。总体而言,结果表明,基于 CNT 的质粒 DNA 传递似乎有望用于植物体内转化,进一步优化可以实现高通量基因编辑,从而加速功能基因组学和作物改良活动。