摘要:降雨后土壤水分的持久性或记忆具有重大的环境影响。已经为原位和卫星数据分别研究土壤水分干燥已做出了许多工作。在这项工作中,我们介绍了多种英国土壤水分产品的干燥特性的比较,包括卫星合并(即TCM),原位(即cosmos-uk)(即cosmos-uk),水文模型[即Grid-to-Grid to-Grid(G2G)]生态研究支持系统(国际棋)]数据。所有网格产品的干燥衰减时间尺度(T)以1 - 2 km的前所未有的分辨率计算,该分辨率与天气和气候模型有关。由于诸如感应深度等差异,它们的t范围有所不同(SMUK和国际象棋除外),但它们的空间模式与土地覆盖率和土壤类型相关。我们进一步分析了Cosmos-UK站点干燥事件的发生。我们表明,土壤水分干燥状态表现出强烈的季节性依赖性,因此,夏季,土壤比冬季更快地干燥。这些季节性依赖性在模型基准测试和评估过程中很重要。我们表明,基于宇宙和LSM的拟合t良好,cosmos的偏差为较低的t。我们的发现有助于越来越多的文献来表征T,目的是开发一种方法,以系统地验证一系列尺度的模型土壤水分产品。
在经典迭代线性系统求解器中,预处理是处理病态线性系统最广泛和最有效的方法。我们引入了一种称为快速求逆的量子原语,可用作求解量子线性系统的预处理器。快速求逆的关键思想是通过量子电路直接对矩阵求逆进行块编码,该电路通过经典算法实现特征值的求逆。我们展示了预处理线性系统求解器在计算量子多体系统的单粒子格林函数中的应用,该函数广泛用于量子物理、化学和材料科学。我们分析了三种情况下的复杂性:哈伯德模型、平面波对偶基中的量子多体哈密顿量和施温格模型。我们还提供了一种在固定粒子流形内进行二次量化格林函数计算的方法,并指出这种方法可能对更广泛的模拟有价值。除了求解线性系统之外,快速求逆还使我们能够开发用于计算矩阵函数的快速算法,例如高效准备吉布斯态。我们分别基于轮廓积分公式和逆变换介绍了两种高效的此类任务方法。
图5。(a)在训练数据下推断a。该模型在图。1a和训练有素的NNFM对线路左侧的数据的预测如下所示。nmae = 0.162。(b)推断上述训练数据。nmae = 0.112。(c)在训练数据下方外推s。nmae = 0.057。(d)在训练数据上方推断s。nmae = 0.027。在每个图中,从图中所示的参数范围的每个边缘删除了10%的数据1a,被排除在培训集外。NNFM经过剩余90%数据的训练。每个点的颜色表示SDD,如图3
引言 ;一些基本函数的逆变换 ;求逆变换的一般方法 ;求逆拉普拉斯变换的偏分式和卷积定理 ;用于求常系数线性微分方程和联立线性微分方程的解的应用 第 3 单元:傅里叶变换 [09 小时] 定义 - 积分变换 ;傅里叶积分定理(无证明) ;傅里叶正弦和余弦积分 ;傅里叶积分的复数形式 ;傅里叶正弦和余弦变换 ;傅里叶变换的性质 ;傅里叶变换的帕塞瓦尔恒等式。 第 4 单元:偏微分方程及其应用 [09 小时] 通过消去任意常数和函数形成偏微分方程;可通过直接积分解的方程;一阶线性方程(拉格朗日线性方程);变量分离法 - 用于求一维解的应用
2凸式23 2.1基础:压缩感应。。。。。。。。。。。。。。。。。。25 2.1.1凸介:原理。。。。。。。。。。。。。。。。25 2.1.2直觉。。。。。。。。。。。。。。。。。。。。。。。。。。25 2.1.3在有限的等轴测图下保证紧密度。。。。。29 2.2低级矩阵恢复。。。。。。。。。。。。。。。。。。。。30 2.2.1凸质:原理。。。。。。。。。。。。。。。。。。。。31 2.2.2在受限的等轴测图下保证紧密度。33 2.2.3没有限制等轴测的问题。。。。。。。。。。35 2.3超分辨率。。。。。。。。。。。。。。。。。。。。。。。。。。40 2.3.1通过总变化规范进行凸介。 。 。 40 2.3.2无限制的等轴测特性。 。 。 。 。 。 。 。 。 。 。 。 。 43 2.3.3通过双证书正确性。 。 。 。 。 。 。 。 。 。 。 。 。 4440 2.3.1通过总变化规范进行凸介。。。40 2.3.2无限制的等轴测特性。。。。。。。。。。。。。43 2.3.3通过双证书正确性。。。。。。。。。。。。。44