摘要。沉浸式虚拟现实 (iVR) 采用头戴式显示器或类似洞穴的环境来创建感官丰富的虚拟体验,模拟用户在数字空间中的物理存在。该技术在神经科学研究和治疗中具有巨大的前景。特别是,虚拟现实 (VR) 技术促进了各种任务和场景的开发,这些任务和场景与现实生活情况密切相关,以在受控和安全的环境中刺激大脑。当传统刺激方法有限或不可行时,它还提供了一种经济有效的解决方案,为用户提供类似的交互感。虽然由于信号干扰或仪器问题,将 iVR 与传统脑成像技术相结合可能很困难,但最近的研究提出了将功能性近红外光谱 (fNIRS) 与 iVR 结合使用,以实现多功能脑刺激范式和灵活检查脑反应。我们对采用 iVR-fNIRS 设置的当前研究进行了全面回顾,涵盖设备类型、刺激方法、数据分析方法和主要科学发现。文献表明,iVR-fNIRS 在完全沉浸式 VR (iVR) 环境中探索各种认知、行为和运动功能方面具有巨大潜力。此类研究应为自适应 iVR 程序奠定基础,用于培训(例如,在新环境中)和临床治疗(例如,疼痛、运动和感觉障碍以及其他精神疾病)。
对表现出接收场的神经元的分析取决于生物体的空间位置,例如网格,位置或边界细胞,通常是从使用射击速率图绘制其在空间中的活性开始的。然而,映射方法是多种多样的,并取决于通常由实验者定性选择的调音参数,因此在整个研究中都有很大变化。诸如此类参数的小变化可能会显着影响结果,但是迄今为止尚未尝试对发射速率图进行定量研究。使用模拟数据集,我们检查了调谐参数,记录持久性和射击场大小如何影响使用最广泛使用的方法生成的空间图的准确性。对于每种方法,我们都发现了一个明确的参数子集,该参数产生了低误差射击率图并隔离了产生的参数1)可能的误差最小,2)帕托托 - 最佳参数集,这些参数集平衡,计算时间,位置场检测准确性和缺失值的外推。平滑的双变量直方图和平均移位直方图始终与最快的计算时间相关联,同时仍提供准确的地图。自适应平滑和嵌合方法被发现可以最有效地补偿低位置采样。内核平滑的确定性估计还可以很好地补偿了低采样的良好,并获得了准确的地图,但它也是测试最慢的方法之一。总体而言,在大多数情况下,双变量直方图,再加上空间平滑,这可能是最理想的方法。
摘要。沉浸式虚拟现实 (iVR) 采用头戴式显示器或类似洞穴的环境来创建感官丰富的虚拟体验,模拟用户在数字空间中的物理存在。该技术在神经科学研究和治疗中具有巨大的前景。特别是,虚拟现实 (VR) 技术促进了各种任务和场景的开发,这些任务和场景与现实生活情况密切相关,以在受控和安全的环境中刺激大脑。当传统刺激方法有限或不可行时,它还提供了一种经济有效的解决方案,为用户提供类似的交互感。虽然由于信号干扰或仪器问题,将 iVR 与传统脑成像技术相结合可能很困难,但最近的研究提出了将功能性近红外光谱 (fNIRS) 与 iVR 结合使用,以实现多功能脑刺激范式和灵活检查脑反应。我们对采用 iVR-fNIRS 设置的当前研究进行了全面回顾,涵盖设备类型、刺激方法、数据分析方法和主要科学发现。文献表明,iVR-fNIRS 在完全沉浸式 VR (iVR) 环境中探索各种认知、行为和运动功能方面具有巨大潜力。此类研究应为自适应 iVR 程序奠定基础,用于培训(例如,在新环境中)和临床治疗(例如,疼痛、运动和感觉障碍以及其他精神疾病)。
摘要: - 本研究深入探讨了虚拟现实 (VR) 技术在英语语言教育领域的应用,重点关注沉浸式学习环境和交互式体验设计。主要目的是探索结合 VR 技术来增强学生英语语言学习体验的有效性。该研究调查了 VR 技术提供的沉浸式学习环境的潜力以及交互式体验设计对语言习得的影响。该研究旨在为这些技术进步如何彻底改变英语语言教育提供宝贵的见解,提供一种引人入胜且有效的语言学习方法。通过彻底研究 VR 技术的沉浸式和交互式方面,该研究旨在为将这些技术融入英语语言教育实践奠定基础,最终为更具创新性和吸引力的语言学习体验铺平道路。
在记录数据实践时,尽可能具体是有益的。组织可以使用工具和模板来帮助阐明其数据实践的目的,指导组织内的产品和工程团队,以在产品设计中建立隐私,并朝着数据最小化和目的规范迈进。16这样的工具就是输入,使用,值模板(如下所示)。应在可能的范围内分别评估每个数据实践,以便为评估每个实践的独特风险并实施相关的隐私保障提供适当的依据。对于在某些司法管辖区(例如欧盟)的组织,有关数据实践和目的的特殊性也将有助于法律合规性,17帮助消除有关组织是否在足够详细的水平上进行评估的保留。
− (AR) 增强现实是通过技术手段,通过数字视觉元素、声音和其他感官刺激实现的现实世界环境的增强型交互式版本。增强现实涉及将视觉、听觉或其他感官信息叠加到现实世界,以增强体验。
摘要 - 认知理论在设计人类计算机界面和沉浸式系统时会为我们的决策提供信息,使我们能够研究这些理论。这项工作通过使用经典可视化问题研究内部和外部用户行为来探讨沉浸式环境中的感官过程:视觉比较和聚类任务。我们开发了一个沉浸式系统来执行用户研究,从不同的渠道收集用户行为数据:用于捕获外部用户互动的AR HMD,功能性近红外光谱(FNIRS)用于捕获内部神经序列以及用于参考的视频。为了检查感官,我们评估了界面的布局(平面2D与圆柱3D布局)以及任务的挑战水平(低认知负荷)的挑战水平如何影响用户的交互,这些交互作用如何随时间变化以及如何影响任务绩效。我们还开发了一个可视化系统,以探索所有数据通道之间的关节模式。我们发现,增加的相互作用和脑血液动力学反应与更准确的性能有关,尤其是在认知要求的试验上。布局类型没有可靠地影响交互作用或任务性能。我们讨论了这些发现如何为沉浸式系统的设计和评估提供信息,预测用户绩效和互动,并从体现和分布式认知的角度提供有关感官的理论见解。
1近几十年来,由于技术和科学的进步以及人类扩展到外太空的目标,对月球的太空任务变得无关紧要。随着太空机构和私人秘书的兴趣日益增长,需要使用流浪者来探索更多敌对和未开发的环境,例如位于月球远侧或南极的环境。然而,在这种不利地形中运营的挑战显着,尤其是在识别可能对任务构成风险的资源和障碍(如岩石或地层)时。一个小错误,例如与未发现的岩石发生碰撞,不仅会损害流动站的完整性,而且会损害整个任务。传统上,流动站的监视和远程操作是基于对地形的2D图像的解释以及各种流动站参数和环境数据的可视化[6]。但是,根据场景,该系统可能无法提供足够的细节或直觉来防止事故或准确识别感兴趣的对象。在这种情况下,建议为流浪者配备先进的技术,以确保未来的任务中的安全性和成功,旨在监视和控制距离更近距离的流浪者,例如,在月球网关或月球基地[1,3],延迟将比地球较低。
摘要 - 在本文中,我们表明虚拟现实(VR)疾病与注意力的降低有关,这是通过在双任务范式中收集的脑电图(EEG)测量的P3B事件相关电位(EEG)的测量结果检测到的。我们假设疾病症状(例如恶心,眼睛疲劳和疲劳)将降低用户注意在虚拟环境中完成的任务的能力,并且在经历了P3B份量的降低中,在体验VR疾病的同时,将动态地反映出注意力的降低。在用户研究中,参与者沿着VR的博物馆进行了游览,沿着VR的一条旋转数量不同,以前证明会导致不同水平的VR病。在关注虚拟博物馆(主要任务)时,要求参与者默默地计算不同频率的音调(次要任务)。在用户没有戴头部安装显示器(HMD)时,进行了与VR病疾病情况进行比较的控制测量值,而当他们沉浸在VR中,但没有在环境中移动。这项探索性研究表明,在多次分析中,在任务过程中收集的P3B的效果平均幅度与任务后用问卷(SSQ)测得的疾病严重程度以及次级任务的计数错误数量有关。因此,VR病可能会损害注意力和任务表现,并且可以通过ERP措施进行这些注意力的变化,而无需要求参与者评估他们的疾病症状。