摘要:密集的均匀纳米复合材料Tisicn涂层,其厚度高达15微米,硬度为42 GPa,通过在AR + C 2 H 2 + N 2 -GAS混合物中与Hexamethyld -iSlyld -iSlyld -iSlyld -iSILASEANE(HMDS)混合物中的空心阴极排放中的反应性钛蒸发方法获得了高达42 GPA的硬度。对等离子体组成的分析表明,该方法允许气体混合物所有成分的激活程度的广泛变化,可提供高(高达20 mA/cm 2)的离子电流密度。可以通过改变蒸气– GAS混合物的压力,组成和激活程度,可以广泛改变该方法获得的化学成分,微结构,沉积速率和性能。将C 2 H 2,N 2,HMD和排放电流的频率增加导致涂层形成速率的增加。中,从微硬度的角度获得最佳涂料是在低排放电流下获得的,并且相对较低的含量为c 2 H 2(1 SCCM)和HMD(0.3 g/h)(0.3 g/h),超过了,这会导致质量和非质量的质量的降低,从而导致降低其质量的降低,这可能会导致其质量的降低,而质量的质量差异会导致质量的降低。涂料。中,从微硬度的角度获得最佳涂料是在低排放电流下获得的,并且相对较低的含量为c 2 H 2(1 SCCM)和HMD(0.3 g/h)(0.3 g/h),超过了,这会导致质量和非质量的质量的降低,从而导致降低其质量的降低,这可能会导致其质量的降低,而质量的质量差异会导致质量的降低。涂料。
使用激光束的热丝定向能量沉积 (DED-LB/w) 是一种金属增材制造 (AM) 方法,具有材料利用率和沉积速率高的优点,但 DED-LB/w 制造的零件存在热输入较大和表面光洁度不理想等问题。因此,在沉积过程中调节工艺参数和监测工艺特征以控制最终质量对于确保最终零件的质量至关重要。本文探讨了 DED-LB/w 工艺的动态建模,并介绍了一种参数-特征-质量建模和控制方法,以提高建模质量和对无法现场测量的零件质量的控制。该研究调查了影响单层和多层焊珠中熔池宽度(特征)和焊珠宽度(质量)的不同工艺参数。提出的建模方法使用参数特征模型作为 F 1 和特征质量模型作为 F 2 。比较了线性和非线性建模方法来描述工艺参数和工艺特征即熔池宽度 (F 1 ) 之间的动态关系。采用全连接人工神经网络根据熔池特征 (F 2 ) 对最终部件质量(即熔滴宽度)进行建模和预测。最后,通过将参数特征 (F 1 ) 和特征质量 (F 2 ) 模型集成到部件宽度的闭环控制中,测试并验证了所提出的参数特征质量建模的有效性和实用性。与仅使用 F 1 的控制回路相比,所提出的方法显示出明显的优势,并有可能应用于控制无法直接测量或现场监测的其他部件质量。
32活页夹喷气添加剂制造(BJAM)提出了一条用于高级制造的途径,该途径是由于高沉积速率,可伸缩性和几何灵活性,用于33种各种高价值材料。34然而,BJAM中的常规有机粘合剂在热解时会引入残留碳,通常35导致最终烧结部分中的合金组成不精确。粘合剂燃烧的不良残留碳36由于对碳添加的37个敏感性,BJAM限制了BJAM在高性能合金中的应用。在这项研究中,我们设计了聚(乙烯基吡咯烷酮-CO-乙烯基38乙酸)(PVP-VAC)作为BJAM的干净燃烧粘合剂,在VAC 39中,过量的氧气可实现清洁剂燃烧并减少残留碳保留率。与广泛使用的40个商业活页夹相比,优化的PVP-VAC粘合剂在H13工具钢中将残留碳保留率降低了90%41。残留碳的显着降低可预测的打印和42随后对复杂的H13工具钢几何形状进行烧结,这是一种已知的合金,由于碳添加碳的烧结而变形,因此在失真周围面临着重大的43个挑战。干净的倦怠粘合剂的设计44通过启用新的AM Designs 45和对成分敏感的高性能合金的应用,为BJAM提供了一条主要的途径,例如基于镍的46种超级合金,钛合金和高合金钢。47 48 49 50简介
摘要一种称为氢进化辅助(HEA)电镀的新型技术,与Galvanostatic的常规电镀方法相比,铜的沉积速率已显着增强,为将设备直接整合到织物上,从而开发了新的场所,从而导致了有用的可耐磨性电子产品的开发。HEA可用于在多壁碳纳米管(MWCNTS)涂层模板轨道和焊接表面上的电子设备(SMD)上两种打印铜轨道,可用于此类轨道,以证明其多功能性用于特定应用,用于特定的施用织物造成损耗。但是,在这个项目中,我们研究了铜沉积是如何使用1000 Denier涂层的Cordura Nylon,层压层的聚酯Ripstop和100%Virgin Vinyl在氢进化技术的情况下进行的。硫酸纯硫酸盐(CUSO 4)和硫酸(H 2 SO 4)用作培养基,通过在-2.0V之间应用-2.0V之间的电压在0.1mm的多壁碳纳米管轨道上进行横向沉积,该电压范围为-2.0V,使用电势可以利用圆柱电压仪的技术来实现级别的序列技术,以实现序列的序列。使用扫描电子显微镜(SEM)观察到相对于所使用的织物类型的织物的结构和铜沉积物的变化。关键词:氢进化有助于(HEA)电镀;铜电沉积;可穿戴电子设备;多壁碳纳米管;面料。导致各种引言以及可穿戴和柔性电子设备开发的优势,对使用无数应用的轻质,灵活和可穿戴的人类和环境监测系统的需求不断增长[1]。在不同的技术和方法中,通过铜电沉积可穿戴技术市场对织物上的导电模板(即电路布局)进行模式,这已经推动了过去几年中现场讨论过的主题之一,可以导致开发不同可穿戴和灵活的电子产品。
摘要可持续的能源过渡刺激了最大程度地减少材料和能源浪费的技术的开发,例如增材制造(AM)。激光金属沉积(LMD)是一种有希望的AM技术,但其复杂性和有限的自动化阻碍了其在生产链中的实现。为提高生产率,已经开发了高沉积率LMD(HDR-LMD)技术,需要先进的设备和强大的激光来源。相比之下,常规的LMD(C-LMD)过程更简单,实施便宜。这项研究旨在通过调节激光功率,扫描速度,粉末进料速率和Inconel 718单轨道上的秒距离来优化C-LMD的生产率和效率。一种创新的方法消除了切割标本以评估单个轨道的必要性,从而可以通过有限的操作员参与,使整体的几何形状和性能表征更快,更强大。进行了广泛的实验运动,以研究过程参数对轨道几何,生产力和效率的影响。多目标优化过程确定了参数组合,同时保持高效率和理想的外壳形状。该研究达到的沉积率范围从700至800 g/h,粉末集水效率在75%至90%之间。使用包括1775 W激光功率的参数,扫描速度在960到1140 mm/min,粉末进料速率在810至1080 g/h之间以及9 mm的秒距离。该研究还清楚地表明,可以进一步提高C-LMD过程性能。本文收集的发现是工作第二部分中进一步优化的基础,该研究的重点是多通邮政多层,并达到1500 g/h的沉积速率,从而促进了工业级别的C-LMD过程。
摘要 电子束粉末床熔合制造部件是一种复杂的增材制造工艺,在航空航天和许多工业过程中具有广泛的优势。它降低了成本,并且对粉末粒度有更大的要求。与激光粉末床熔合工艺相比,这具有更高的质量沉积速率,从而缩短了生产时间。粉末床制造工艺通常会导致沿构建方向形成柱状晶粒结构,从而产生具有各向异性的物理和机械性能的组件。这是限制该技术应用的主要问题。为了促进等轴晶粒的形成,以及细化柱状形态和消除各向异性,需要考虑工艺条件和孕育剂或异质成核位点的存在的作用。在本研究中,通过添加氮化钛孕育剂,利用熔化策略和可变工艺参数促进铁素体不锈钢中柱状晶粒向等轴晶粒的转变。我们发现,热梯度 (G) 与凝固速率 (R) 之比 (G/R 比) 控制着晶粒形态和纹理:低 G/R 比已被证明可以促进等轴晶粒的形成。研究了这种转变的工艺条件。在 Freemelt One 机器中打印单线轨迹后对样品进行分析,然后借助光学显微镜进行研究,以确定导致柱状晶粒成功转变为等轴晶粒的机器参数组合。研究得出结论,在低热梯度、高扫描速度和低面积能量的条件下,等轴晶粒的比例有所增加。最终,需要进一步研究以确定促进铁素体不锈钢从柱状晶粒转变为等轴晶粒的确切工艺参数。未来的研究人员可以使用这项研究的结果来创建这种钢种的凝固图,并帮助行业定制铁素体不锈钢中的特定纹理,以实现所需的微观结构和机械性能。关键词:增材制造、E-PBM、孕育、工艺参数、TiN、CET
简介。在可见光和近红外 (NIR) 范围内具有等离子体特性的金属,例如金、银和铜,可用于光学、电子、传感和其他应用,目前备受关注 [1, 2]。重要的问题是等离子体特性的稳定性,这通常会限制某些金属的使用,因为它们具有化学反应性和可能产生杂散效应。用于等离子体的最常见材料是金,它具有出色的光学性能以及抗氧化性。金在等离子体中的局限性包括其价格高昂以及与微电子技术工艺不兼容。银由于光学损耗低而表现出优异的性能,也得到了广泛应用 [3-7],但通常被认为由于化学稳定性较低而吸引力较小,因此等离子体稳定性也较低 [8]。铜是另一种具有出色光学性能的金属。与金相比,它价格低廉,在可见光和近红外范围内的光学损耗较低。铜在等离子体应用中的优势已被充分发挥,例如在超低损耗铜等离子体波导和生物传感应用中 [9-13]。铜在暴露于环境大气时容易发生相对较快的表面氧化 [14]。在正常条件下,主要产物是 Cu 2 O,CuO 的贡献很小或没有。因此,要将 Cu 膜用于等离子体应用,需要保护结构表面免受氧化引起的降解。可以通过应用 SiO 2 、Al 2 O 3 甚至石墨烯的保护壳/涂层来实现 [10, 15]。在这项工作中,我们测试了一种简单的紫外臭氧处理方法,该方法可在铜膜上快速形成一层薄氧化层。该氧化层有效地保护了铜免受随后与氧化有关的等离子体特性降解的影响,这最近已在 Cu 纳米粒子中得到证实 [16]。我们对形成的氧化层进行了复杂的分析。我们预计,本文提出的结果将作为一种简单有效的方法,用于保留薄铜膜的等离子体特性,以用于非线性光学或传感应用。样品制作。使用 NEE-4000 电子束蒸发系统中的电子束蒸发沉积厚度为 28 nm 的铜膜。在室温下,将顶部覆盖有 2 nm 厚 SiO 2 层的干净硅晶片放置在电子束蒸发器的真空室中,压力为 3×10 7 Torr。作为沉积材料,使用纯度为 99.99% 的铜颗粒。沉积速率约为 2 Å/s。在一个周期内同时制造了 8 个相同的样品。引用的铜膜“厚度”是
红树林是高效的生态系统,可从大气中捕获大量二氧化碳。大气中的co是通过沿海植物通过光合作用捕获的,然后将其隔离为有机物数百年。此过程可以降低大气中的浓度,而存储的碳通常称为“蓝色碳。作为蓝色碳的主要水槽,红树林对缓解气候的贡献很大。该碳作为生物量在红树林中存储在红树林中,或者在沉积物中存储,或者以有机和无机碳的形式出口到附近的沿海地区。红树林的净初级生产力(NPP)估计约为208 tg c yr -1。红树林在20 - 30年内达到了稳定状态。这种平衡是通过连续的生长和衰减循环维持的。假设生物量的碳密度无增加,则必须通过等效损失来平衡固定为净初级生产力(NPP)的碳。该碳被保留在沉积物中的红树林(77%),站立的生物质(15%的芽,叶子,树干和根中)和8%的地下根系系统中。碳被导出到相邻的生态系统中,作为垃圾,颗粒有机碳(POC),溶解的有机碳(DOC)和溶解的无机碳(DIC)或释放到大气中。外来假设认为,局部衍生的有机碳(POC)和溶解的有机碳(DOC)的出口是红树林提供的关键生态系统服务。这种出口的有机物燃料在邻近沿海栖息地中基于碎屑的食物网。估计表明,红树林碳的出口显着促进了这些相邻生态系统的营养结构。质量平衡评估证实了出口理论,表明红树林固定的碳通常超过森林本身中存储的数量。然而,这种出口的大小在不同的红树林之间有很大差异,受到沿海地貌,潮汐状态,淡水投入和生产力等因素的影响。沉积速率迅速,导致碳封存明显。随着时间的流逝,红树林建立了大量的土壤剖面,为各种微生物和动物群落创造了栖息地。数十年来,在泥flat泥的初步定殖后,红树林经历了发展和垂直积聚,适应了海平面的波动,沉降和隆起。此过程导致数米的土壤积累。随着时间的推移,这些沉积物被红树林根,各种植物(例如微藻),动物群(尤其是挖洞的螃蟹)和多样的微生物群落进一步渗透。森林地板变成了丘,洞穴,试管,裂缝,裂缝和各种根结构的复杂矩阵,并层层有有机物,epifauna,以及多样的微藻和大藻类。复杂的生物地球化学过程控制着红树林和相邻潮汐水之间溶解和颗粒物的交换,受潮汐
使用不同靶到基片距离的化学计量氮化硅靶,通过射频磁控溅射在单面 P 型抛光掺硼硅晶片基片上沉积氮化硅薄膜。改变靶到基片的间距(非常规参数)以优化表面粗糙度和晶粒尺寸。这种优化提供了均匀、密集的氮化硅薄膜的正态分布,没有表面裂纹。采用原子力显微镜探索氮化硅薄膜的精确表面粗糙度参数。所有样品的表面粗糙度和晶粒分析都表现出直接关系,并与靶到基片的间距呈反比关系。通过以下参数分析了 Si3N4 的表面形貌:平均粗糙度、均方根粗糙度、最大峰谷高度、十点平均粗糙度、线的偏度和峰度。氮化硅薄膜的表面粗糙度在基于氮化硅波导的生物传感器制造中具有重要意义。 (2022 年 8 月 4 日收到;2023 年 4 月 3 日接受) 关键词:原子力显微镜、射频磁控溅射、氮化硅、靶材到基板间距、薄膜 1. 简介 氮化硅具有卓越的光学、化学和机械性能,是微电子学中用作电介质和钝化层 [1] 以及微机电系统 (MEMS) 中结构材料最广泛的材料 [2, 3]。氮化硅薄膜由于其在可见光和近红外 (NIR) 区域的高折射率和透明度,在光电子应用中也发挥着至关重要的作用 [4, 5]。氮化硅薄膜在光电子领域的主要应用是基于光波导的生物传感器作为平面光波导 [6-8]。平面光波导是一种三层结构,其中通常称为芯的高折射率薄膜夹在两个低折射率膜(称为下包层和上包层)之间。平面波导内部的光传播基于全内反射原理。据报道,光波导中芯体表面的粗糙度是造成波导边界处光传播损耗的原因 [10, 11]。这是由于界面处的反射和折射现象而不是全内反射造成的。芯体的粗糙表面可以将光散射到不同方向。芯体和包层之间的折射率差 ∆n 越大,光在芯体中的限制就越大。因此,由于氮化硅的折射率约为 2,而二氧化硅的折射率约为 1,因此二氧化硅/氮化硅/二氧化硅的特定结构是平面光波导的合适候选材料。46 作为上下包层,折射率差 ∆n ~ 0.5[9]。Si 3 N 4 薄膜通过低压化学气相沉积、热蒸发、等离子体增强化学气相沉积和磁控溅射系统制备[12-16]。然而,磁控溅射技术由于无毒气体、低温沉积、易于调节沉积速率和沉积系统简单而比 PECVD 技术具有相当大的优势[17]。薄膜的常规参数
1-圣彼得堡州立大学,7/9大学,纳布大学,圣彼得堡,199034,俄罗斯2-物理与工程学院,伊特摩大学,伊特莫索沃,9,9,圣彼得堡,191002年,俄罗斯3 - 俄罗斯3 - Theomat Group,Theomat Group,theomat Group,Chembio Cluster,Chembio Cluster,Itmoosos,Lomososos,92俄罗斯4-激光中心(LFM),应用科学大学Münster,Stegerwaldstraße39,48565德国Steinfurt,德国 *由氯化物,柠檬酸或tart酸和醋酸铜作为铜板溶液组成。表明,在使用连续波532 nm激光辐射辐射后,可以增加铜的沉积速率,并产生与纯金值的电阻,并与底物表面高粘附,并具有较高的纯金值。这种金属化方法有利于实际使用铜模式,包括生产新的可打印微电器设备。因此,我们证明了在任意三维表面上铜沉积的可能性。此外,将所得的铜微图案测试为非酶葡萄糖的工作电极。最后,所提出的技术可以成功地用于设计和开发传感器平台,用于电化学分析和微电器设备。传统上,光刻技术被广泛应用于印刷电路板行业,用于制造电路[1]。激光辅助方法可以分为两组。关键字:直接激光写作,铜,传感器,深层溶剂,激光处理,微电子介绍适用于制造用于电导微型文案(电路)的新方法的开发对于电子设备生产和科学非常重要。但是,这种方法是耗时且昂贵的,涉及许多步骤,例如蚀刻和电镀。另外,由于蚀刻过程中使用的溶剂具有腐蚀性,因此底物的选择是有限的,因此它不适用于e。 g。可打印的电子设备柔性基材和滚动生产。因此,近年来,人们对开发有效和低成本的处理技术来制造导电模式引起了很多兴趣。无掩模直接激光写作的方法被认为是传统光刻和其他现有技术的有前途的替代方法,用于生产微电源组件,传感器和其他设备[2] - [4]。第一组包括技术,其中激光辐射用作表面的初步激活或敏化。例如,这些方法之一是由激光诱导的选择性表面激活(SSAIL),在这些方法中,可以在几乎所有通过PS脉冲的激光激活的聚合物表面和刚性介电的表面上创建铜微孔图,并在其刚性介电介质上创建铜色,并随后的化学还原过程[5] - [7]。第一组的另一个例子是使用有机物