抽象免疫疗法可以利用宿主免疫系统与癌症作斗争的能力。在过去的几十年中,在这一领域取得了巨大进展,其临床成功取得了显着的临床成功,包括一小部分患者的持久反应。但是,将这种疗法扩展到大多数癌症患者的同时,在保持最小的不良反应的同时,存在巨大的挑战。局部免疫疗法是一种有前途的方法,可以原位浓缩免疫调节,而无需全身暴露,因此最大程度地减少了全身毒性。更重要的是,局部免疫调节仍然会导致全身作用,从而赋予整体抗癌免疫以消除传播性疾病。为了促进这些局部免疫疗法,已经开发出广泛的生物材料作为递送系统,以保护当地注射的免疫相关治疗疗法并扩大其保留率。无手术注射的宏观生物材料是迄今为止开发的最有前途的生物材料类之一,因为它们适用于用针或导管的微创注射,并形成生物相容性的三维基质,作为当地的药物,用于当地交付。在这次迷你审查中,我们通过强调一些最近的例子,概述了在局部癌症免疫疗法中应用可注射的宏观生物材料的最新进步。我们将各种可注射的生物材料与不同的凝胶化机制进行了比较,并讨论了它们在免疫调节剂,免疫细胞和癌症疫苗的应用中的应用。我们还讨论了当前的挑战,并为癌症免疫疗法中可注射的宏观生物材料的未来发展提供了观点。
越来越多的可再生能源的使用会导致间歇性发电的更高份额。在本文中,我们开发了Flexies,这是一种新的开源电力系统优化模型,以确定可再生电力发电技术和灵活性技术的成本效率部署。我们在2030年,2040年和2050年的中欧(瑞士,奥地利,法国,德国和意大利)的电力系统案例研究中应用弹性。案例研究表明,由多个天然气存储组成的低碳发电,电池和电力汽油在2050年的成本效益 - 而不是在燃气轮机中燃烧天然气。这样的脱级奖励电源系统可能会提前成本效益,假设碳价格足够高。此外,我们发现,由于电力储存的需求较低,陆上风被优先于高度挥发性太阳能。互连可实现均匀发电技术的更高股份(ON - 和近海风,透明,生物量浪费),并减少对太阳能和存储的需求。因此,与隔离国家的情况相比,互连将总发电量降低了8.2%,系统成本最多将高达16.3%,碳当量排放量最多增加9.0%。最后,我们观察到脱碳化电力系统需要从运营到投资阶段的成本转变,并且总的正常化成本可能高于电力市场价格。因此,可能需要新的机制来激励脱碳化功率系统。
基于状态的签名(HBS)方案的标准化始于2018年和2019年的IETF RFC的出版物IETF RFCS的扩展Merkle签名方案(XMSS)和基于Leighton-Micali Hash的签名(LMS)的出版物[8],[8],[11]。2020年,美国国家标准技术研究所(NIST)发表了进一步推荐的参数[7]。德国联邦信息安全办公室(BSI)在自己的出版物中指定了这两种算法[5]。自从其标准化以来,已将状态HBS算法部署在多种产品中,从嵌入式设备到服务器[3],[6],[12]。由于其固有的状态,可以使用密钥对创建的签名数量有限,这也限制了应用程序的范围。实际上,它们最适合验证很少更改的数据的完整性和真实性,例如嵌入式设备的固件。然后进行验证过程,然后在安全的启动或固件更新过程中进行。在过去的工作中,研究界已经调查了此用例[9],[10],[15],[17]的硬件和软件优化,并且供应商带来了前进的产品[12]。
包装规格: 纸盒内含 1 个玻璃或塑料小瓶(5 剂)。 纸盒内含 1 个玻璃或塑料小瓶(10 剂) 纸盒内含 1 个玻璃或塑料小瓶(25 剂) 纸盒内含 1 个玻璃或塑料小瓶(50 剂) 纸盒内含 1 个玻璃或塑料小瓶(100 剂) 纸盒内含 10 个玻璃或塑料小瓶(5 剂) 纸盒内含 10 个玻璃或塑料小瓶(10 剂) 纸盒内含 10 个玻璃或塑料小瓶(25 剂) 纸盒内含 10 个玻璃或塑料小瓶(50 剂) 纸盒内含 10 个玻璃或塑料小瓶(100 剂)
摘要 - 真实的硬件PLC非常昂贵,有时科学家/工程师无法建立小型测试床并进行实验或学术研究。为此,OpenPLC项目引入了合理的替代选项,并在编程代码,模拟物理过程以及使用低成本设备(例如Raspberry Pi和Arduino uno)中提供了灵感。不幸的是,OpenPLC项目的设计没有任何安全性,即缺乏保护机制,例如加密,授权,反复制算法等。这使攻击者可以完全访问OpenPLC并进行未经授权的更改,例如启动/停止PLC,设置/更新密码,删除/更改用户程序等。在本文中,我们进行了深入的调查,并披露了OpenPLC项目中存在的一些漏洞,表明攻击者既没有对用户凭据,也不对物理过程进行任何先验知识;可以访问关键信息,并有效地更改OpenPLC执行的用户程序。我们所有的实验均在最新版本的OpenPLC(即V3)上进行。我们的实验结果证明,攻击者可能会混淆受感染的OpenPLC控制的物理过程。最后,我们建议OpenPLC创始人和工程师关闭所披露的漏洞并具有更安全的基于OpenPLC的环境的安全建议。索引条款 - OpenPlc;网络攻击;网络安全;控制逻辑注射攻击;
在瑞典进行的一项临床试验中,比较了三种细胞的百日咳疫苗和一种全细胞DTP疫苗,有20,745名婴儿获得了Tripacel的“混合”制剂,其中包含与二倍抗原相同数量的倍增抗原,在2、4和6或6或3或3、5、5、5和12个月中。在本研究中,不良事件的发生率小于或与其他细胞百日咳疫苗和全细胞DTP组相比。全细胞DTP后的发烧率> 40.5°C和癫痫发作或可疑癫痫发作明显高于颈部百日咳疫苗。低渗/低速发作的速率是可比的,三痛后给予了29个报告。在疫苗接种后的48小时内据报道,据报道,据报道,据报道,没有死亡或脑炎/急性脑病,侵入性细菌感染,婴儿痉挛或过敏反应的死亡。
1伊朗,马什哈德医学院医学院,伊玛目·雷扎医院血管和血管内手术研究中心血管外科助理教授,伊朗马什哈德; 2伊朗,马什哈德医学院医学院,伊玛目雷扎医院血管外科血管和血管内研究中心麻醉学副教授,伊朗马什哈德; 3手术肿瘤学研究中心麻醉学助理教授,伊拉姆·雷扎医院,医学院,马什哈德医学科学大学,伊朗马什哈德; 4伊朗马什哈德医学科学大学医学院麻醉学麻醉学副教授,伊朗医学院; 5伊朗Mashhad医学科学大学伊玛目REZA医院血管和血管内手术研究中心普通外科居民; 6普通医师,马什哈德医学科学大学,伊朗马什哈德。
1。简介拉斯托尼亚物种是机会主义的,可以在自来水,工业水分配系统和实验室纯净水系统等各种水源中生存和生长的水传播生物[1]。因此,这些微生物可能会污染用于患者护理的溶液,例如盐水溶液,静脉药,蒸馏水或呼吸溶液[2-4]。这些溶液的污染可能会引起侵袭性感染的爆发,例如血液感染(BSIS),骨髓炎和脑膜炎[5]。最常见的Ralstonia物种是Ralstonia Pickettii [6]。然而,Ralstonia Mannitolilytica,Ralstonia solanacearum和Ralstonia insidiosa也可能引起人类感染。R。Insidiosa是与Pickettii [7]最紧密相关的细菌,可能会因污染溶液而导致医院爆发。本研究提出了由R. insidiosa引起的菌血症爆发,这与我们医院的肝素化血液注射器有关。
摘要:三级烧伤受伤构成了重大的健康威胁。迫切需要更安全,更易于使用,更有效的技术来治疗。我们假设脂肪酸和三肽的共价结合物可以形成与伤口兼容的水凝胶,从而加速愈合。我们首先将共轭结构设计为脂肪酸 - 氨基酸1 – amonoacid2-Apartate Am- phiphiles(CN酸– AA1 – AA2 – D),它们有可能根据每个小节的结构和特性自组装成水凝胶。然后,我们通过使用两种FMOC/TBU固相肽合成技术,基于该设计生成了14种新型结合物。我们通过串联质谱和核磁共振光谱验证了它们的结构和纯度。在低浓度(≥0.25%w / v)中形成13个结合物,但是C8酸性-ILD-NH 2显示出最佳的水凝胶化,并进一步研究了。扫描电子显微镜表明,C8酸性NH 2形成纤维网络结构和迅速形成的水凝胶,这些水凝胶在磷酸盐缓冲盐水中稳定(pH 2-8,37°C),这是一种典型的病理生理条件。注射和流变学研究表明,水凝胶表现出重要的伤口治疗特性,包括注射性,剪切稀疏,快速再凝胶和与伤口兼容的力学(例如Moduli g'''和g',g',〜0.5-15 kpa)。C8酸-ILD-NH 2(2)水凝胶显着加速了C57BL/6J小鼠上三级烧伤伤口的愈合。在一起,我们的发现证明了CN脂肪酸-AA1 – AA2-D分子模板的潜力,以形成能够促进三级燃烧的伤口愈合的水凝胶。