短暂性胚胎缺氧后的致致膜性和活性氧:实验性和临床性含量,重点关注具有人类流产潜力的药物。活性氧(ROS)可能对胚胎组织有害。不良胚胎效应取决于低氧事件的严重程度和持续时间以及在组织中发生缺氧期间。胚胎中最近形成的动脉的血管内皮极容易受到ROS损伤。内皮损害导致器官的血管破坏,出血和玛尔德开发,通常应该由动脉提供。ROS还可以诱导胚胎中的不规则心律,从而导致肾小管心脏开始跳动时的血流和压力改变。在心脏病发生过程中,血流和压力的这种改变会导致多种心血管缺陷,例如转置和心室间隔缺陷。本文的一个目的是审查和比较动物研究中各种起源的瞬态胚胎缺氧引起的畸形模式,这些畸形与瞬态胚胎缺氧在人类怀孕中由于流产失败而导致的畸形。结果表明,瞬时缺氧和具有引起人类流产失败的化合物,例如米索前列醇和激素妊娠试验(HPT),如Primodos,与类似的变性频谱有关。频谱包括减少肢体,心血管和中枢神经系统缺陷。米索前列醇和HPT的缺氧相关的致畸性,可能是子宫收缩的继发性,并在器官发生过程中构成子宫内术/胚胎血管的含量。
气孔防御对于防止病原体进入和进一步定植的植物很重要。质外塑性活性氧(ROS)在激活细菌后激活气孔闭合方面起着重要作用。然而,下游事件,尤其是对警卫细胞中胞质氢(H 2 O 2)的影响的因素,对警卫细胞中的特征很少了解。我们使用拟南芥在气孔免疫反应期间使用涉及倍增运动ROS爆发的拟南芥突变体来研究H 2 O 2传感器ROGFP2-ORP1和ROS特异性荧光素探针。出乎意料的是,NADPH氧化酶突变体RBOHF通过警卫细胞中与病原体相关的分子模式(PAMP)对ROGFP2-ORP1的过度氧化。但是,气孔闭合与高ROGFP2-ORP1氧化没有密切相关。相比之下,RBOHF对于通过基于荧光素的探针在后卫细胞中测得的PAMP介导的ROS产生是必需的。与以前的报道不同,RBOHF突变体(而不是RBOHD)在小型触发的气孔闭合中受到了损害,导致对细菌的气孔防御性缺陷。有趣的是,RBOHF还参与了PAMP诱导的凋亡碱化化。在H 2 O 2介导的气孔闭合100μm中,RBOHF突变体也部分受损,而较高的H 2 O 2浓度最高为1 m m,并未促进野生型植物中的气孔闭合。我们的结果提供了有关塑料和胞质ROS动力学之间相互作用的新见解,并突出了RBOHF在植物免疫中的重要性。
1药理学系,L J大学,L J大学,艾哈迈达巴德382210,印度古吉拉特邦; Dr.Dipa.israni@ljku.edu.in(D.K.I. ); mansi.shah_ljip@ljinstitutes.edu.in(M.S.) 2萨拉斯瓦蒂药学学院药理学和药房实践系,甘地纳加尔382355,印度古吉拉特邦; rrneha2910@gmail.com 3印度古吉拉特邦VADODARA的帕鲁尔大学帕鲁尔大学帕鲁尔大学帕鲁尔大学药理学系391760; sonijhanvi4@gmail.com 4 Shree S. bhupen27@gmail.com 5塞尔帕科恩大学药学学院,泰国纳克恩(Nakhon)病原体73000,6药理学和药房实践系,L。M. M.药学学院,Opp。 古吉拉特大学,纳维兰普拉,艾哈迈达巴德380009,印度古吉拉特邦; mehulchorawala@gmail.com 7 Chiang Mai University,Chiang Mai 50200的药学学院,泰国; supachoke.man@cmu.ac.ac.th 8 of Research Administration,Chiang Mai University,Chiang Mai 50200,泰国 *通信:sudarshan.s@cmu.ac.th(S.S.); chuda.c@cmu.ac.th(C.C.)1药理学系,L J大学,L J大学,艾哈迈达巴德382210,印度古吉拉特邦; Dr.Dipa.israni@ljku.edu.in(D.K.I.); mansi.shah_ljip@ljinstitutes.edu.in(M.S.)2萨拉斯瓦蒂药学学院药理学和药房实践系,甘地纳加尔382355,印度古吉拉特邦; rrneha2910@gmail.com 3印度古吉拉特邦VADODARA的帕鲁尔大学帕鲁尔大学帕鲁尔大学帕鲁尔大学药理学系391760; sonijhanvi4@gmail.com 4 Shree S. bhupen27@gmail.com 5塞尔帕科恩大学药学学院,泰国纳克恩(Nakhon)病原体73000,6药理学和药房实践系,L。M. M.药学学院,Opp。古吉拉特大学,纳维兰普拉,艾哈迈达巴德380009,印度古吉拉特邦; mehulchorawala@gmail.com 7 Chiang Mai University,Chiang Mai 50200的药学学院,泰国; supachoke.man@cmu.ac.ac.th 8 of Research Administration,Chiang Mai University,Chiang Mai 50200,泰国 *通信:sudarshan.s@cmu.ac.th(S.S.); chuda.c@cmu.ac.th(C.C.)古吉拉特大学,纳维兰普拉,艾哈迈达巴德380009,印度古吉拉特邦; mehulchorawala@gmail.com 7 Chiang Mai University,Chiang Mai 50200的药学学院,泰国; supachoke.man@cmu.ac.ac.th 8 of Research Administration,Chiang Mai University,Chiang Mai 50200,泰国 *通信:sudarshan.s@cmu.ac.th(S.S.); chuda.c@cmu.ac.th(C.C.)
在糖尿病中,血小板被多种刺激激活,活化的血小板产生活性氧(ROS)诱导血小板聚集,进而形成血栓,导致各种心血管疾病。因此,检测血小板中的ROS扰动可为诊断糖尿病提供线索。在本文中,报道了基于铱的自毁探针(1a-1c)通过光致发光(PL)和电化学发光(ECL)监测血液中ROS的扰动。探针是基于通过氨基甲酸酯部分与苯基硼酸频哪醇酯结合的铱配合物设计的。三种探针在苄基连接体的邻位上含有不同的吸电子基团;因此,它们对ROS的反应性预计会有细微的差异。正如预期的那样,这三种探针对过氧化氢 (H 2 O 2 ) 的 PL 变化最为明显,但它们对 ROS 的响应模式却截然不同。利用这种不同的 ROS 响应模式,建立了一种结合 PL 和 ECL 响应的鉴别策略,并成功证明了对糖尿病大鼠和对照大鼠血小板的鉴别。
胞外自身 DNA (esDNA) 抑制生长的能力正受到越来越多的研究关注,因为这可用于多种目的,包括开发特定的生物除草剂。虽然已经对几种双子叶植物的抑制作用进行了研究,但是对其在单子叶植物中的作用和随后的信号传导过程知之甚少。在本文中,我们测量了水稻 (Oryza sativa L.) 的生长情况,计算了侧根和冠根的数量,确定了绿度指数,量化了 O 2 .- 和 H 2 O 2 的产生,并确定了编码抗氧化酶 (SOD s 和 CAT s) 基因的表达,水稻是单子叶植物的模型植物。发芽 7 天后,水稻根系暴露于 0、75 和 150 µg cm -3 的 esDNA。结果发现,抑制作用与 esDNA 浓度呈负相关,这可以通过主根的长度来判断。有趣的是,这种负面影响只在直接暴露的器官(根部)中观察到,而在整个幼苗的芽长或鲜重中没有观察到。不同处理组的叶片绿度指数百分比和冠根和侧根数量也相似。然而,esDNA 暴露于根部会增加根部 O 2 .- 和 H 2 O 2 的产生。在分子水平上,这种反应的特点是抗氧化基因 SOD 3、CAT B 和 CAT C 表达减少。这些发现表明 esDNA 会局部抑制水稻生长,例如在经过处理的根部,这种反应包括增加 ROS 的产生和抑制抗氧化剂。这项研究可以作为确定浓度和暴露时间组合的基础,以显著抑制单子叶杂草的总生长,同时将对作物的影响降至最低。
骨质疏松症是一种代谢性骨病,它影响性别,并且是骨折最常见的原因。骨质疏松疗法主要抑制破骨细胞活性,很少旨在触发新的骨骼生长,从而经常引起严重的全身性不良反应。在生理上,细胞内氧化还原状态取决于促氧化剂,氧化剂(活性氧,ROS)和抗氧化剂的比率。ROS是骨质疏松症中氧化应激的关键因素,因为氧化还原状态的变化负责动态骨重塑和骨再生。ROS代和抗氧化剂系统中的失衡在骨质疏松症,刺激成骨细胞和骨细胞对破骨细胞生成的发病机理中起关键作用。ROS可防止矿化和成骨,从而导致骨质流失的增加。另外,抗氧化剂直接或间接地有助于激活成骨细胞,从而导致分化和矿化,从而减少骨质质外生的发生。由于免疫反应性的不可预测性和报告的不良反应,尽管药物对氧化应激产生了有希望的结果,但针对破骨细胞的临床治疗的治疗受到限制。纳米技术介导的干预措施比再生医学的其他治疗方式获得了显着的优势。纳米疗法方法通过增强其成骨和抗跨性栓塞潜力来影响纳米颗粒的抗氧化特性以触发骨骼修复,从而影响生物相容性,机械性能和骨诱导率。因此,利用纳米疗法来维持成骨细胞和破骨细胞的分化和增殖是典型的。
31。Zhang M.等。 “氧化石墨烯会诱导质膜损伤,活性氧的积累和脂肪酸谱在Pichia Pastoris变化”。 生态毒理学与环境安全132(2016):372-378。Zhang M.等。“氧化石墨烯会诱导质膜损伤,活性氧的积累和脂肪酸谱在Pichia Pastoris变化”。生态毒理学与环境安全132(2016):372-378。
figuren°3:正常细胞对癌细胞对活性氧的敏感性的模型………………………………………………………………………