(名称/州号或文件号/长度和类型/颜色描述) 出发地:___________________________ 发射/回收地点:_________________________ 过境地区:______________________________ 车辆描述:_________________________ _________________________ 停泊地点:________________________________________ 车辆执照号:___________________________ ___________________________ 研究领域:_____________________________________________________________________ (经纬度和经度和/或名称及物理描述) 如果操作员未按安排返回或取得联系,请拨打以下紧急电话:_______________________________________________________________________________________
当浮船坞拟入级本社时,应提交显示结构主要部件的尺寸、布置和细节以及相关数据的图纸和文件以供审查或批准。审批图纸通常应一式三份提交。一般而言,这些图纸和文件应包括以下(1)和(2)项(如适用)。(1) 审批图纸 (a) 总体布置图 (b) 船坞中长处的横剖面尺寸 (c) 翼墙和浮筒结构图 (d) 甲板和舱壁结构图 (e) 泵送布置 (f) 机械和电气布置图 (g) 管道系统(示意图) (h) 灭火布置 (i) 油舱水位和吃水指示系统详情 (j) 挠度指示系统详情 (2) 信息 (a) 规格 (b) 稳性计算和静水曲线 (c) 纵向、横向和局部强度的计算和数据 (d) 操作手册,包括压载手册 (e) 油舱布置,同时显示最大工作水头和溢流管和空气管的高度,以及在设计中使用时显示最大差动工作水头的数据 (f) 与起重机总载荷有关的数据,包括吊钩载荷和布置(如果安装了起重机) (g) 涂层规格 (h) 测试计划
当浮船坞拟入级本社时,应提交显示结构主要部件的尺寸、布置和细节以及相关数据的图纸和文件以供审查或批准。审批图纸通常应一式三份提交。一般而言,这些图纸和文件应包括以下(1)和(2)项(如适用)。(1) 审批图纸 (a) 总体布置图 (b) 船坞中长处的横剖面尺寸 (c) 翼墙和浮筒结构图 (d) 甲板和舱壁结构图 (e) 泵送布置 (f) 机械和电气布置图 (g) 管道系统(示意图) (h) 灭火布置 (i) 油舱水位和吃水指示系统详情 (j) 挠度指示系统详情 (2) 信息 (a) 规格 (b) 稳性计算和静水曲线 (c) 纵向、横向和局部强度的计算和数据 (d) 操作手册,包括压载手册 (e) 油舱布置,同时显示最大工作水头和溢流管和空气管的高度,以及在设计中使用时显示最大差动工作水头的数据 (f) 与起重机总载荷有关的数据,包括吊钩载荷和布置(如果安装了起重机) (g) 涂层规格 (h) 测试计划
2101. 图纸和文件 浮船坞拟入级本船级社时,应提交图纸和文件,说明结构主要部件的尺寸、布置和细节以及相关数据,以供审查或批准。审批图纸通常应一式三份提交。一般而言,这些图纸和文件应包括下列(1)和(2)项(如适用)。 (1) 审批图纸 (a) 总布置图 (b) 坞长中段横剖面尺寸 (c) 翼墙和浮筒结构图 (d) 甲板和舱壁结构图 (e) 泵送布置 (f) 机械和电气图 (g) 管路系统(示意图) (h) 灭火布置 (i) 液舱水位和吃水指示系统细节 (j) 挠度指示系统细节 (2) 信息 (a) 规格 (b) 稳性计算和静水曲线 (c) 纵向、横向和局部强度的计算和数据 (d) 操作手册,包括压载手册 (e) 液舱布置,同时显示最大工作水头和溢流管和空气管高度,以及在设计中使用时显示最大差异工作水头的数据 (f) 与起重机总载荷有关的数据,包括吊钩载荷和布置(如果安装了起重机) (g) 涂层规格 (h) 测试计划
在设计大型浮动机场或航空母舰时,船舶设计师需要解决飞机着陆对这些结构的影响的瞬态动力学问题。解决这个问题的困难涉及以下三个阶段。首先,这个问题需要对流体、飞机、浮动结构及其相互作用进行跨学科研究。第二,集成系统是一个时间相关系统,其中飞机和浮动体之间的相对位置会因飞机着陆运动而发生变化。第三,在无限域中定义的流体需要特殊的数值处理。由于这些困难,迄今为止,只有少数关于这个瞬态问题的简化研究被报道。Watanabe 和 Utsunomiya (1996) 使用有限元 (FE) 程序,给出了圆形超大型浮动结构 (VLFS) 上规定的脉冲载荷引起的弹性响应的数值结果。Kim 和 Webster (1996) 以及 Yeung 和 Kim (1998) 使用傅里叶变换方法研究了无限弹性跑道的瞬态现象。Endo (1999) 采用 FE 方案和 Wilson- � 方法 (Wilson, 1973; Bathe, 1982) 研究了飞机在恶劣海况下从 VLFS 起飞和降落的瞬态行为,使用施加在结构节点上的三角形时间脉冲载荷来表示由飞机重量引入的载荷。Kashi-wagi 和 Higashimachi (2003) 以及 Kashiwagi (2004) 根据飞机在跑道上的位置、速度和载荷的规定时间变化曲线,介绍了飞机着陆和起飞引起的浮筒式 VLFS 的瞬态弹性变形。在这些报告中,没有考虑飞机和 VLFS 之间的相互作用,因为飞机着陆或起飞对 VLFS 施加的载荷是规定的。当使用其他可用的数学模型和软件包来解决此类飞机-VLFS-水相互作用动态问题时,就会出现困难。例如,Xing (1988)、Xing 和 Price (1991) 开发的数值方法,
海水中近表面声速 3'4 (1483 m s-r) 到频率计数器。门控周期由射频询问脉冲和声纳返回信号之间的持续时间设置。反射的声纳信号不会影响距离测量,因为它们的传播时间更长。 一对接收换能器安装在特殊形状的黄铜浮标下方,重 4 公斤 [图 3(a)],并通过一段尼龙绳悬挂在海面以下约 4 米处(图I )为浮标位置的三角测量计算提供了基线。通过比较换能器悬挂点之间的测量分离与换能器分离的声纳距离测量,确定此布置的基线稳定性在 * 0.I m 以内。在典型的实验情况下,即前后基线为 15 米,距离应答浮标 200 米,接收传感器的信噪比为 30 dB,通过三角测量计算和位置数据的统计处理,浮标位置可以在 * 0.5 米的精度范围内确定(第III B 节)。
将海水中近表面声速3'4 (1483 m s-r) 发送到频率计数器。门周期由射频询问脉冲和声纳返回信号之间的持续时间设置。反射的声纳信号由于传播时间较长,不会影响距离测量。一对接收换能器安装在重 4 千克的特殊形状的黄铜浮标下方 [图 3(a)],并通过一段尼龙绳悬挂在海面以下约 4 米处(图 1),为浮标位置的三角测量计算提供了基线。通过比较换能器悬挂点之间测得的分离度与换能器分离的声纳距离测量值,确定此布置的基线稳定性在 * 0.1 m 以内。在典型的实验情况下,即前后基线为 15 米,到应答浮标的范围为 200 米,接收传感器的信噪比为 30 dB,通过三角测量计算和位置数据的统计处理,可以在 * 0.5 米的精度范围内确定浮标位置(第 III B 节)。