摘要:信息的爆炸式增长迫切要求扩展光通信和信息处理的容量。基于轨道角动量的模分复用 (MDM) 被公认为提高单光纤带宽最有前途的技术。为了使其与主波分复用 (WDM) 兼容,宽带等高效相位编码受到高度追求。本文提出了一种基于扭曲液晶和后镜的超宽带反射平面光学设计。光在扭曲双折射介质内的回溯导致消色差相位调制。利用这种设计,展示了单扭曲反射 q 板将白光束转换为多色光学涡旋。进行了琼斯演算和矢量光束表征以分析宽带相位补偿。双扭曲配置将工作波段进一步扩展到 600 nm 以上。它为WDM/MDM兼容元件提供了超宽带和反射解决方案,并可能显著促进超宽带平面光学技术的进步。
量子力学系统的希尔伯特空间可以具有非平凡几何,这一认识导致人们在单粒子和多粒子量子系统中发现了大量新奇现象。特别是,与单粒子波函数相关的几何考虑导致了非相互作用拓扑绝缘体 (TI) 的最初发现和最终分类 [1 – 4] ,以及对这些相中缺陷相关特性的研究 [5 – 8] 。另一方面,在分数量子霍尔系统 (FQHS) [9,10] 和分数陈绝缘体 (FCI) [11,12] 的框架内,研究了拓扑与占据非平凡单粒子态的粒子间相互作用之间相互作用所产生的迷人物理。然而,由于后者的关联性质,建立单粒子和多粒子层面上非平凡几何的作用之间的直接关系一直很困难。在本文中,我们展示了二维 (2D) 单粒子能带结构的非平凡几何与相关 Bardeen-Cooper-Schrieffer (BCS) 超导体的响应特性之间的明确联系 [13] 。特别地,我们表明,在用大质量狄拉克模型描述正常态的二维系统中,超导态遵循修改的通量量子化条件,从而产生分数通量涡旋以及非常规约瑟夫森响应。必须强调的是,超导态与正常态没有扰动关系。但是,正如我们在下面所展示的,使用 BCS 变分假设可以处理相变两侧的几何作用。流形量子化源于这样一个事实:在块体超导体内部深处,序参量的整体相位是恒定的。在传统的
由一台变频驱动压缩机和一台定速压缩机组成。每个涡旋压缩机包括一个固定涡旋(螺旋)和一个摆动涡旋。摆动涡旋安装在固定涡旋内。制冷剂从啮合螺旋的外部吸入并挤压到涡旋的中心,从而对制冷剂加压。为了最大限度地减少泄漏,两个涡旋之间所需的接触力很大,并且必须对涡旋表面进行润滑。在低压缩机速度下,润滑效率会降低,从而导致压缩机磨损增加。
,已被称为超导二极管效应。效果的根源取决于对称性破坏机制。我们研究了NBN和NBN/磁绝缘子(MI)杂种的超导微桥。应用二极管效率为30%时,当施加了小至25 mt的平面磁场时。在NBN和NBN/MI杂种中,我们发现当磁场平行于样品平面时,二极管效应消失。我们的观察结果与涡旋表面屏障确定的临界电流一致。超导带的两个边缘的不等障碍导致二极管效应。此外,观察到矩阵的最高可达10 K,这使得基于二极管应用的设备可能在更大的温度范围内的设备潜力。
数码涡旋压缩机采用简单有效的方法来调节空调的容量,在调节领域具有无与伦比的性能。为了调节容量,数码涡旋分为两个阶段运行,即“负载状态”,压缩机以满容量和质量流量作为普通涡旋压缩机工作,以及“卸载状态”,此时没有容量和质量流量。在“卸载状态”期间,涡旋之间会分离。一旦涡旋分离,任何通过的气体都不再被压缩。更改循环时间(“负载状态”时间和“卸载状态”时间)可确定压缩机的容量调节。
由于正则角动量守恒,在螺线管场内产生的带电粒子束在螺线管场外获得动能角动量。动能轨道角动量与阴极上的场强度和光束大小的关系称为 Busch 定理。我们以量子力学形式表述了 Busch 定理,并讨论了量化涡旋光束(即携带量化轨道角动量的光束)的产生。将阴极浸入螺线管场是一种产生电子涡旋光束的有效而灵活的方法,而例如,可以通过将电荷剥离箔浸入螺线管场来产生涡旋离子。这两种技术都用于加速器以产生非量化涡旋光束。作为高度相关的用例,我们详细讨论了在电子显微镜中从浸入式阴极产生量化涡旋光束的条件。指出了该技术用于产生其他带电粒子涡旋束的普遍可能性。
这些压缩机采用两个相同的同心涡旋,一个插入另一个内。一个涡旋保持静止,另一个则围绕其旋转。此运动将气体吸入压缩室,并使其通过涡旋旋转形成的逐渐变小的“口袋”,直到达到腔室中心的最大压力。在那里,气体通过固定涡旋中的排气口释放。在每个轨道上,多个口袋同时被压缩,因此操作几乎是连续的,无脉冲的。作为 SRC-250 至 SRC-1000 型号的标准配置,涡旋压缩机具有众多优势: • 更高的效率等级可节省超过 20% 的能源 • 由于振动水平降低和运动部件减少,可靠性极高 • 合规技术几乎坚不可摧,甚至允许液态制冷剂回流
为什么选择谷轮涡旋™?客户选择谷轮涡旋™ 的原因有很多,包括: - 艾默生环境技术公司专利的独特设计。它保证涡旋压缩机具有市场上最低的噪音和最高的效率和耐用性。- 久经考验的业绩记录:全球安装了超过 6000 万台涡旋压缩机。- 全球供应:艾默生环境技术公司在三大洲拥有九家涡旋压缩机工厂,所有工厂均采用符合相同严格质量标准的生产技术。为全球初始安装或现场服务提供的压缩机具有完全相同的高质量设计。- 客户支持:艾默生环境技术公司在欧洲和世界各地设有办事处和批发商网络,为所有客户提供支持,无论他们身在何处。
对为期 4 个月的滑翔机任务进行了分析,以评估亚热带北大西洋西部边界反气旋涡旋中的湍流耗散。涡旋(半径 < 60 公里)的核心低位势涡度在 100 至 450 米之间,最大径向速度为 0.5 ms21,罗斯贝数 < 20.1。湍流耗散是根据滑翔机飞行模型得出的垂直水速推断出来的。耗散在涡旋核心中受到抑制(< = 53 102 10 W kg21),在其下方增强(.102 9 W kg21)。升高的耗散与垂直速度和压力扰动的准周期结构相一致,表明内部波是耗散的驱动因素。启发式射线追踪近似法用于研究导致湍流耗散的波浪-涡旋相互作用。射线追踪模拟与两种可能导致耗散的波浪-涡旋相互作用相一致:近惯性波能量被涡旋的相对涡度捕获,或内部潮汐(在附近的大陆坡产生)进入涡旋剪切的临界层。后一种情况表明,表征海洋盆地西部边界的强烈中尺度场可能充当“漏墙”,控制内部潮汐向盆地内部传播。
虽然大多数样本类型的FastPrep®速度设置为4.0 m/s 20秒,但某些样品可能需要更严格的条件才能完全裂解。均质化速度和/或时间可以增加。当使用涡旋而不是FastPrep®进行裂解时,可以通过在溶液基质中进行涡旋之前在液氮中磨碎样品。涡旋持续时间也可以根据需要延长。