玻色-爱因斯坦凝聚态 (BEC) 是物质的一种量子态,其中玻色子粒子在单一本征态中形成宏观种群。预测这种状态的理论 [ 1 ] 等待了 70 年才在实验室中被探索 [ 2 , 3 ],这一里程碑式的成就开启了近 30 年在超冷原子和量子模拟器领域的卓有成效的研究 [ 4 ]。然而,尽管取得了进展,常用的 BEC 测量技术在提供的信息方面并不完整。成像是 BEC 测量技术的核心。通过将光照射穿过原子云并记录其投射的阴影,可以提取特定状态下原子的密度。通常有两种成像模式:原位,对仍在陷阱内的云进行成像,或飞行时间 (TOF)。后者通过打开陷阱并记录云膨胀后的原子密度来完成 [ 5 ];它类似于在光学中测量“远场”的强度。如果粒子在膨胀过程中不相互作用,并且云的初始尺寸相对于最终膨胀尺寸可以忽略不计,则 TOF 图像提供云的动量分布,即波函数的空间傅里叶变换的幅度。如果存在相互作用,但最终密度足够低,以至于它们可以忽略不计,则测量的动量分布的动能反映初始动能加上相互作用能。这些成像模式仅捕获状态的部分信息,因为它们仅在单个时间点和单个平面上测量密度,无论是原位还是 TOF。然而,BEC 是量子对象,因此它们是物质波 [6],其特征是振幅和相位。因此,要表征 BEC,必须在它们演化过程中获得其在空间中任何地方的振幅和相位的完整图。因此,依靠这两种模式,创新的
涡旋和束缚态是理解超导体电子特性的有效方法。最近,在新发现的 kagome 超导体 CsV3Sb5 中观察到了表面相关的涡旋核心态。虽然尖锐的零能量电导峰的空间分布看起来与来自超导狄拉克表面态的马约拉纳束缚态相似,但其起源仍然难以捉摸。在本研究中,我们利用低温扫描隧道显微镜/光谱法对两种化学掺杂的 kagome 超导体 Cs(V1xTrx)3Sb5 (Tr=Ta 或 Ti) 中的可调涡旋束缚态 (VBS) 进行了观测。与原始的 CsV3Sb5 相反,CsV3Sb5 衍生的 kagome 超导体表现出全间隙配对超导性,同时没有长程电荷序。零能量电导图表明涡旋晶格发生了场驱动的连续重新取向转变,表明存在多带超导性。Ta掺杂的CsV3Sb5表现出Caroli-de Gennes-Matricon束缚态的常规十字形空间演化,而Ti掺杂的CsV3Sb5表现出尖锐的、非分裂的零偏压电导峰(ZBCP),该峰在涡旋的长距离上持续存在。非分裂ZBCP的空间演化对表面效应和外部磁场具有鲁棒性,但与掺杂浓度有关。我们的研究揭示了多带化学掺杂CsV3Sb5系统中可调谐的VBS,并为先前报道的kagome超导体表面非量子极限条件下的Y形ZBCP提供了新的见解。2024年中国科学出版社。由爱思唯尔和中国科学出版社出版。版权所有。
超流体是一种迷人而奇特的物质状态,源于极低温度下的量子效应。超流体是一种液体,与传统流体的区别在于没有分子粘性。因此,低速穿过它的物体不会受到任何阻力。超流体的例子有 3He 和 4He、由稀碱性气体制成的玻色-爱因斯坦凝聚体 (BEC)、光学非线性系统中的光以及中子星的核心。超流体的应用范围从冷却超导材料和红外探测器到冷原子和湍流的纯基础研究。超流体湍流中最明显的量子效应是量子涡旋的存在。这种涡旋就像原子龙卷风,具有量化的循环。在 3He 和 4He 以及原子 BEC 等系统中,量子涡旋表现为流体动力学涡旋,重新连接和重新排列其拓扑结构。
物质的外来量子状态继续产生令人惊讶的现象。一个主要的例子是手性超级导管,其中超导性不仅与非平凡拓扑结合在一起,而且与自发的时间反转对称性断裂(TRSB)[1]相结合,导致许多非常常规的效果[2-6]。最杰出的是按顺序参数绕组设置的有限的Chern号,从而产生了受拓扑保护的手性边缘模式[7-14]。早期的重点集中于手性p波超导性[3,15]及其与3 he [2-6]中超级流体的相似之处,而手性d波超电导率最近越来越多,由于提议在一系列材料中的提议引起了显着关注],srptas [28 - 31],Lapt 3 P [32],BI / NI [33,34]和URU 2 SI 2 [35 - 38]。此外,最近提出了手性D波超电导率作为实现拓扑量子计算的平台[39 - 41]。仍然,直接检测超导配对对称性和拓扑不变性仍然是物理学中最杰出的两个问题。因此,手性超导体的无可争议的掩盖被证明是难以捉摸的。使事情变得更糟,最近的研究预测,典型的纤维印刷(例如手性边缘电流和固有的轨道角动量(OAM))消失了除P波[42 - 49]以外的所有配对对称性,更复杂的测量结果。确实,虽然手性边缘模式是拓扑的,但它们的当前和OAM不是[47,50,51]。在本文中,我们着手通过以独特的涡旋缺陷的形式识别强大的实验体积签名来解决手性d波超核的问题。涡流已在手性p波超级流体[2-6]中进行了广泛的研究,预测无模拟的涡流缺陷
摘要。心脏左心室(LV)内部的涡流血流结构在从心脏到器官的有效血液供应中起着至关重要的作用。最近的医学成像和计算技术进步为超声心动图和心脏MRI中的血流可视化工具带来了。但是,由于流动非常不稳定和动荡,因此仍然很少有工具可以精确捕获涡流结构。由于涡流流量力对心脏病中心脏功能的预后的重要性,因此在医学科学中识别涡流流结构而没有歧义的情况。在本文中,我们提出了一种数学方法来描述带有符号图表达式的二维(2D)流的拓扑特征,称为COT表示。由于心脏收缩并在短时间内反复放松,因此沿该运动边界的瞬时血流模式将作为源/水槽结构出现。这意味着该流量无法满足2D流的前面拓扑分类理论中假定的滑移条件[T. Sakajo和T. Yokoyama,Ima J. Appl。数学。,83(2018),pp。380--411],[T。 Sakajo和Y. Yokoyama,离散数学。 算法应用,15(2023),2250143]。 因此,我们通过引入一个名为n-划合的SS addle的简化奇异点,建立了一种新的拓扑分类理论和一种适用于具有运动边界条件的血流的算法。380--411],[T。 Sakajo和Y. Yokoyama,离散数学。算法应用,15(2023),2250143]。因此,我们通过引入一个名为n-划合的SS addle的简化奇异点,建立了一种新的拓扑分类理论和一种适用于具有运动边界条件的血流的算法。将理论应用于可视化工具获得的2D血流模式,我们成功地将涡流结构识别为拓扑涡流结构。这实现了一种新的进化处理,表征了健康的血流模式以及患病心脏中效率低下的模式。
摘要:信息的爆炸式增长迫切要求扩展光通信和信息处理的容量。基于轨道角动量的模分复用 (MDM) 被公认为提高单光纤带宽最有前途的技术。为了使其与主波分复用 (WDM) 兼容,宽带等高效相位编码受到高度追求。本文提出了一种基于扭曲液晶和后镜的超宽带反射平面光学设计。光在扭曲双折射介质内的回溯导致消色差相位调制。利用这种设计,展示了单扭曲反射 q 板将白光束转换为多色光学涡旋。进行了琼斯演算和矢量光束表征以分析宽带相位补偿。双扭曲配置将工作波段进一步扩展到 600 nm 以上。它为WDM/MDM兼容元件提供了超宽带和反射解决方案,并可能显著促进超宽带平面光学技术的进步。
携带OAM的涡旋光束由于其广泛的应用而引起了人们的广泛关注,例如光学操控与捕获[1]、成像[2]、量子纠缠[3]、自由空间光(FSO)通信[4]等等。特别地,那些具有相互正交特性的光束已被用于FSO通信中的复用/解复用,以增加容量和频谱效率[5,6]。然而,基于OAM复用/解复用的FSO通信面临的主要挑战是大气湍流的干扰。当激光束在大气中传播时,由于湍流引起折射率的随机波动,一个OAM态的能量将分散到相邻态[7-10]。这种现象称为OAM模式的串扰。显然,OAM模式间的串扰会影响通信质量,严重的串扰甚至会导致通信失败。在之前的研究中,人们采用自适应光学来补偿湍流大气中光束的OAM[11,12],但自适应光学系统非常复杂。此外,重构
摘要 我们开发了一种带有粒子运动分析的油循环率 (OCR) 模拟技术,可以定量评估涡旋压缩机中形状和结构的影响。显然,粒子运动分析有利于分析油雾行为。分析包括三个模拟。这些模拟有三个不同的喷射器,它们定义了粒子的起始位置。第一个在固定涡旋的排出口,另一个在涡旋压缩机底部的油池上。最后一个喷射器在电机顶部,这三个模拟计算从压缩机排放到循环单元的颗粒数量。阐明了涡旋压缩机内部油雾行为的机制,并且这些模拟使得在各种模型的情况下,大多数计算结果都在测得的 OCR 的 ± 1wt% 以内。
摘要 卡诺电池被认为是一种有前途的适用于中型和大型应用的电-热-电存储技术。最近,有人提出在卡诺电池中使用两用热机。在这样的系统中,单个装置在充电期间充当热泵(HP,压缩机操作)或在放电期间充当有机朗肯循环(ORC,膨胀机操作)。与使用两台独立机器的传统卡诺电池相比,这种配置降低了该技术的投资成本。已经在小型(1 kW el)卡诺电池中试工厂使用单个涡旋压缩机/膨胀机进行了实验活动。在充电和放电模式下都测试了广泛的操作条件。讨论了系统电荷对两种操作模式下可获得工作点的影响。研究发现,在 HP 模式下运行系统所需的系统电荷低于 ORC 模式。在这些低电荷下,增加 HP 模式下的电荷对系统在较高源温和散热器温度下的性能有积极影响。在 ORC 模式的较高电荷下,发现增加系统电荷对研究的运行范围内的系统启动有积极影响。除了定性讨论外,还对系统和涡旋机进行了定量研究。
,已被称为超导二极管效应。效果的根源取决于对称性破坏机制。我们研究了NBN和NBN/磁绝缘子(MI)杂种的超导微桥。应用二极管效率为30%时,当施加了小至25 mt的平面磁场时。在NBN和NBN/MI杂种中,我们发现当磁场平行于样品平面时,二极管效应消失。我们的观察结果与涡旋表面屏障确定的临界电流一致。超导带的两个边缘的不等障碍导致二极管效应。此外,观察到矩阵的最高可达10 K,这使得基于二极管应用的设备可能在更大的温度范围内的设备潜力。