量子力学系统的希尔伯特空间可以具有非平凡几何,这一认识导致人们在单粒子和多粒子量子系统中发现了大量新奇现象。特别是,与单粒子波函数相关的几何考虑导致了非相互作用拓扑绝缘体 (TI) 的最初发现和最终分类 [1 – 4] ,以及对这些相中缺陷相关特性的研究 [5 – 8] 。另一方面,在分数量子霍尔系统 (FQHS) [9,10] 和分数陈绝缘体 (FCI) [11,12] 的框架内,研究了拓扑与占据非平凡单粒子态的粒子间相互作用之间相互作用所产生的迷人物理。然而,由于后者的关联性质,建立单粒子和多粒子层面上非平凡几何的作用之间的直接关系一直很困难。在本文中,我们展示了二维 (2D) 单粒子能带结构的非平凡几何与相关 Bardeen-Cooper-Schrieffer (BCS) 超导体的响应特性之间的明确联系 [13] 。特别地,我们表明,在用大质量狄拉克模型描述正常态的二维系统中,超导态遵循修改的通量量子化条件,从而产生分数通量涡旋以及非常规约瑟夫森响应。必须强调的是,超导态与正常态没有扰动关系。但是,正如我们在下面所展示的,使用 BCS 变分假设可以处理相变两侧的几何作用。流形量子化源于这样一个事实:在块体超导体内部深处,序参量的整体相位是恒定的。在传统的
在这项新研究中,科学家将理论模型与尖端实验相结合,在偶极超固体中创建并观察涡旋——这一壮举被证明极具挑战性。因斯布鲁克团队此前在 2021 年取得了突破,在铒原子超冷气体中创建了第一个长寿命二维超固体,这本身就是一项艰巨的任务。
中尺度涡旋对海洋温度和盐度结构产生重大影响,从而改变生态环境和声传播特性。先前对中尺度涡旋效应下声传播的研究主要集中于碎片化的、快照式的分析。而本研究采用整体的方法,通过整合多源数据来阐明海洋温度和盐度结构,最终影响它们的生态环境和声传播。与现有论文相比,本研究采用了更全面、更连续的方法。通过融合多源数据,本研究引入了一种创新的中尺度涡旋跟踪算法和增强的高斯涡旋模型。利用BELLHOP射线理论模型,本研究研究了西北太平洋一个气旋涡旋和一个表现出完整生命周期的典型反气旋涡旋(CE-AE)对的声场特征。结果表明,中尺度涡旋的整个生命周期对声场环境产生显著的影响。随着CE的增强,汇聚区(CZ)距离减小,CZ宽度扩大,直达波(DW)距离缩短。相反,增强的AE会使CZ距离增加,CZ宽度收缩,DW距离延长。本文定量分析了影响涡旋生命周期的关键因素,结果表明涡旋强度和变形参数都显著影响声传播特性,其中涡旋强度的影响更大。本研究对海面测高数据在水下声学研究中的应用具有重要的贡献,并对典型中尺度涡旋环境中涡旋参数对水下声传播的影响提供了初步认识。此外,这项研究为未来研究海洋系统中涡流动力学和声传播之间的复杂关系奠定了基础。
Big Finish 每次迎来一位全新的时间领主都让人兴奋不已。近年来,我们有克里斯托弗·埃克莱斯顿、大卫·田纳特和约翰·赫特爵士加入我们的行列,还有朱迪·惠特克即将首次有声演绎。我们还邀请了德里克·雅各比爵士担任战争大师,现在萨沙·达万将在《叫我大师》中首次亮相。我喜欢萨沙出演的所有角色,也很熟悉他的有声作品,可以追溯到他参与动画电视连续剧《Chuggington》(我女儿三岁左右在 CBeebies 上看过!)。我第一次在屏幕上看到萨沙是在《时空大冒险》,从那时起我就一直饶有兴趣地关注着他的职业生涯,因为他给我留下了深刻的印象。他是《铁拳》(由《莎拉·简大冒险》中的芬恩·琼斯主演)中的亮点。他在《嫌疑犯》和《狼》(后者有一条非常俏皮的《神秘博士》评论!)等系列中也总是给人留下深刻的印象。所以我迫不及待地想听到他在这个新系列中的表现——他的主人有着迷人、疯狂的魅力,还有那灿烂的鳄鱼般的微笑。别忘了,萨查之前曾出现在 Big Finish 的主人的故事中……有关更多信息,请参阅 Vortex 的预览!VORTEX
许多工艺冷却应用所需的温度范围超出了冷却器允许的最小和最大工作值。下图显示了混合水管道布置变化的简单示例,该变化可以在满足此类冷却条件的同时实现冷却器可靠运行。例如,实验室负载需要 238 gpm (5 l/s) 的水以 86°F (30°C) 的温度进入工艺过程,并以 95°F (35°C) 的温度返回。冷却器的最大冷却水出口温度为 65°F (15.6°C),无法直接供应给负载。在所示的示例中,冷却器和工艺流速相等,但这不是必需的。例如,如果冷却器的流速更高,那么就会有更多的水绕过并与返回冷却器的温水混合。
本汇编总结了时空光学涡旋 (STOV) 结构和特性的主要物理基础。描述和表征 STOV 的一般方法基于标量近轴高斯波包模型。在此基础上,任意阶的 STOV 结构被视为时空厄米-高斯模式的叠加。这种方法能够以明确且物理透明的形式系统地表征主要的 STOV 特性。特别是,我们分析了 STOV 振幅和相位分布、它们在自由传播和光学系统中的演变、内部能量流和轨道角动量。讨论并定性解释了拓扑决定的 STOV 固有不对称性以及“能量中心”和“概率中心”之间的差异 [Phys. Rev. A 107 , L031501 (2023)]。概述了 STOV 生成和诊断方法,并简要描述了非高斯(贝塞尔型)STOV 的主要特性。最后,考虑了整个文本中接受的标量高斯模型的局限性,并揭示了可能的概括。整个演示可能有助于初步介绍与 STOV 相关的思想及其非凡的特性。
本研究采用数据驱动的方法来研究物理系统振动,重点关注两个主要方面:使用变异自动编码器(VAE)生成物理数据(即数据“相似”与通过现实世界过程获得的使用变压器,以便使用体内稀疏传感器(观察者)中的信息在时间空间中连续预测柔性身体非平稳振动(2D时间序)。 VAE经过从作者进行的实验中收集的涡旋诱导振动(VIV)数据进行训练,然后负责生成类似于实验的合成VIV数据。 然后使用合成数据来训练一个变压器结构,其目标是使用稀疏观测值不断预测时间空间的振动。 针对实际实验测试了变压器(从未见过实际数据),并将其性能与对实际数据训练的相同体系结构进行了比较。 这样做,VAE的能力生成保留其培训数据内在属性的数据(即) 评估身体)。 最终提出了变压器体系结构,LSTM和DNN的预测性能之间的比较。使用变压器,以便使用体内稀疏传感器(观察者)中的信息在时间空间中连续预测柔性身体非平稳振动(2D时间序)。VAE经过从作者进行的实验中收集的涡旋诱导振动(VIV)数据进行训练,然后负责生成类似于实验的合成VIV数据。然后使用合成数据来训练一个变压器结构,其目标是使用稀疏观测值不断预测时间空间的振动。针对实际实验测试了变压器(从未见过实际数据),并将其性能与对实际数据训练的相同体系结构进行了比较。这样做,VAE的能力生成保留其培训数据内在属性的数据(即身体)。最终提出了变压器体系结构,LSTM和DNN的预测性能之间的比较。
对最近发现的高温超导体THH 10提出了对涡旋阶段和涡流动力学的全面研究,其在170 GPA时T C = 153 K。获得的结果强烈表明涡流相变的二维(2D)特征在Thh 10中。激活能在低场区域的磁场上产生对数依赖性u 0 ln(h),而在高场面中,幂律依赖性u 0〜H-1在高场区域中,向从2D状态到三维集体固定方案的交叉信号。此外,固定力局部依赖性展示了在t c附近的表面型固定的优势。热激活能(U 0),衍生在热活化的流动流理论中,将非常高的值与Ginzburg Number GI = 0一起以高于2×10 5 k的速度。039–0。085,仅比Bisrcacuo酸盐和10-3-8个基于铁的超导体家族低。这表明热闪光在超水的涡旋晶格的动力学中的巨大作用,其物理学类似于基于铁和铜的高温超导体的物理学。
超导体中的涡旋可以帮助识别出现现象,但是涡流的基本方面(例如它们的熵)仍然很众所周知。在这里,我们通过测量磁耐药性和对超薄纤维(≤2个单位细胞)的磁性抗性和Nernst效应,研究了不足的BI 2 SR 2 CACU 2 CACU 2 O 8+X中的涡旋熵。我们从具有不同掺杂水平的样品上的磁传输测量中提取伦敦穿透深度。它揭示了超级流动相位刚度ρs与超级传导过渡温度t c线性缩放,直至极不足的情况。在相同批次的超薄纤维上,我们通过芯片温度计测量Nern的效果。一起,我们获得了涡旋熵,并发现它用t c或ρs呈指数衰减。我们进一步分析了高斯超导波动框架中t c上方的nernst信号。在二维极限中电气和热电测量的组合提供了对高温超导性的新见解。