近年来,在液晶(LCS)中观察到了在折射率光栅上耦合的光束之间的强两光束能传递。由于LC主管的重新定位而获得的0.2阶折射率的高调制使得可以增加一个梁的强度,并具有增益系数的强度近两个数量级,而固体光致热晶体中的强度几乎要大[1-6]。在具有杂化有机 - 无机细胞A LC层的方案中,将两个固体底物放置在两个或两个固体底物之间,其中一个或两个是光致热的。相交的相干光束会干扰并产生无机光致热性底物(S)中的空间电荷。空间电荷会产生一个空间周期性的电场,该电路穿透LC层并调节LC主管。由此产生的主管光栅引起折射率光栅,并确保在LC中传播的相交梁的耦合[7-11]。在讨论混合系统中主管重新定位的机制时,通过与LC旋转极化的相互作用[12-14],而不是通过LC静态介电性各向异性[15,16],而不是通过LC旋转极化[15-16],这是与董事与主任的太空场合的夫妇。对列中[12]和胆固醇LC细胞获得的实验结果的描述[13,14]需要一个额外的假设,使导演幅度是空间载体范围的非线性函数。这导致通过其有效的值替换了外部的系数,这取决于空间电荷范围。在[12]中讨论了这种非线性的可能物理机制。Despite the fact that the physical mechanism of interaction of the space-charge field with the director is the same for nematic and cholesteric LCs, the observed dependence of the gain coe ffi cient of the incident signal beam on the director grating spacing is very di ff erent.增益系数定义为
图片/显示 • LCD 面板类型:IPS 技术 • 背光类型:W-LED 系统 • 面板尺寸:27 英寸 / 68.6 厘米 • 显示屏涂层:防眩光,3H,雾度 25% • 有效可视面积:597.89(水平)x 336.31(垂直) • 宽高比:16:9 • 像素密度:82 PPI • 响应时间(标准):4 毫秒 (GtG)* • 亮度:250 cd/m² • SmartContrast:10,000,000:1 • 对比度(标准):1000:1 • 最大分辨率:1920 x 1080 @ 75 Hz* • 像素间距:0.311 x 0.311 毫米 • 视角:178º(水平)/ 178º(垂直),@ C/R > 10 •无闪烁 • 显示色彩:16.7 M • 扫描频率:30 -83 kHz(水平)/ 56 -76 Hz(垂直) • LowBlue 模式 • sRGB
软执行器是软机器人系统中的关键部件,将输入能量转换成力,驱动机器人系统。[1,2]与传统的刚性电机相比,软执行器具有柔顺性、可拉伸性,并表现出具有大量自由度(DOF)的连续变形。[3]它们在与环境相互作用时表现出多种变形模式,例如弯曲、扭曲或在密闭空间内调整形状。最近,研究人员利用聚合物材料开发了许多类型的软执行器,例如气动执行器[4,5]、介电弹性体执行器(DEA)、[6,7]响应凝胶[8,9]液晶聚合物[10,11]等。在这些智能材料和结构中,液晶弹性体(LCE)因其巨大的可逆驱动应变和应力而引起了广泛的兴趣。
研究了液晶环氧树脂 (LCER) 的蠕变行为,并将其与由相同环氧单体制备的非 LCER 进行了比较。使用 Burgers 模型评估实验数据以解释液晶 (LC) 相的增强作用。使用时间-温度叠加原理预测材料的长期性能。结果表明,在树脂网络中引入 LC 相可以降低材料的蠕变应变和蠕变应变率,尤其是在高温下。从模拟中提取的参数表明,LC 相的存在增强了树脂的瞬时弹性、阻滞弹性和永久流动阻力。提出用刚性填料效应和交联效应来解释增强机制。
我们基于手性铁电列相(n f ∗)提出了液晶激光器装置。激光培养基是通过将铁电列材料与手性剂和一小部分荧光染料混合而获得的。值得注意的是,在N f ∗相中,非常低的电场垂直于螺旋轴能够重新定位分子,从而产生了一个周期性结构,其导演不是单个谐波,但包含各种傅立叶成分的贡献。此功能诱导了几个光子带盖的外观,这些光子带镜的光谱范围取决于磁场,可以利用该磁场来构建可调激光设备。在这里,我们报告了可以在低电场下进行调谐的自制n f ∗激光器的表征,并在材料的两个光子带中呈现激光作用。获得的结果为设计新的和更通用的液晶激光器设计开辟了有希望的途径。
在基于液晶弹性体 (LCE) 的刺激响应材料的潜在应用中,开发不受束缚的软致动器是最具吸引力的应用之一。[1–4] 例如,在软体机器人中[5–8] 以及在微流体和仿生设备中,[9,10] 含有光活性分子的光响应性 LCE 聚合物已得到广泛应用。[11,12] 与温度和湿度等其他刺激相比,光作为不受束缚的刺激物的好处是时空控制、可调性和直接应用。[13–15] 因此,开发基于可聚合 LCE 材料的光驱动致动器的努力已成为一个成熟的研究课题,为将光转化为机械运动奠定了宝贵的基础。 [16,17] 偶氮苯衍生物是目前 LCE 执行器中最突出的光开关,因为它们易于加入,并且能够实现快速、可逆响应的远程控制驱动。[18,19] 然而,通常需要液晶 (LC) 材料的光聚合才能获得可逆的形状变化。[20,21] 这种光诱导交联过程非常耗时,而且高效固化具有挑战性,而偶氮苯部分的不良异构化则进一步阻碍了这一过程。[22]
“如果我想制作任意三维形状,比如手臂或抓手,我必须排列液晶,这样当受到刺激时,这种材料就会自发地重新组合成那些形状,”塞拉说。“到目前为止,缺少的信息是如何控制液晶排列的三维轴,但现在我们有办法实现这一点。”
HAL 是一个多学科开放存取档案库,用于存放和传播科学研究文献,无论这些文献是否已出版。这些文献可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
摘要软计算机将需要柔软的材料,这些材料表现出丰富的功能多样性,包括形状变形和光反应。这些功能的组合可以在软计算机中有用的行为,可以通过合成表现出局部响应性的材料来进一步发展。可以通过为直接墨水写作(DIW)制定复合墨水来启用液晶弹性体(LCE)的局部响应(LCE),它们是表现出形状变形的软材料。金纳米棒(Aunrs)可以添加到LCES中,以通过局部表面等离子体共振吸收光后光热形状变化。我们比较了LCE公式,重点是DIW和Aunrs的光响应性打印。不同的三维体系结构的局部响应能力启用了可以振荡,爬网,滚动,运输质量并显示其他独特的致动和运动模式,以响应光线,从而使这些有希望的功能材料用于高级应用程序。