中枢神经系统(CNS)是一种免疫学专业的组织,需要特殊的保护和平衡的免疫反应(Rua和McGavern,2018; Alves de Lima等,2020)。长期以来,大脑被认为是一个“免疫特异性”部位,它是指为耐受抗原引入而开发的进化适应性而无需诱导强大的免疫反应(Alves de Lima等,2020)。然而,大量的研究表明,在不同的病理状况中,中枢神经系统中有强大的免疫反应,包括感染,自身免疫性神经蛋白浮肿,神经退行性疾病和CNS损伤(Croese等人,Croese等,2021)。中枢神经系统由两个主要结构,脑和脊髓组成,这些结构被保护性物理屏障(例如脑膜,血脑屏障(BBB),血液中性障碍物和血液脑脊液(CSF)屏障)所包围(Alves de Lima等人(Alves de Lima等)。脑膜作为CNS障碍,但也代表了与外围的界面,并有助于CNS稳态和免疫反应(Rua和McGavern,2018)。脑膜由三层 - 硬脑膜,蛛网膜母乳和PIA MATER组成。硬脑膜是颅骨附近的最外层,该层高度支配,血管化并包含淋巴管(Aspelund等,2015; Louveau等,2015)。脑膜
血管内皮生长因子(VEGF)及其同源受体(VEGFRS),除了其众所周知的参与生理血管生成/淋巴管生成和与病理血管形成相关的疾病外,在中枢神经系统中起多因素功能(CNS)。除了控制脑发育,通过控制脑血管生成和调节神经发生以及星形胶质细胞的不同外,VEGFS/VEGFRS轴轴在生理和病理逻辑环境中都在成人大脑中发挥重要功能。在本文中,在CNS中描述了生理VEGFS/VEGFRS的功能之后,我们重点介绍VEGFS/VEGFR参与神经变性疾病,通过回顾有关相当复杂的VEGFS/VEGFR的文献对Alzheimer's(addins)和ParkIns的病原机制的贡献,通过综述了当前的文献(vegfs/vegf)。此后,根据AD和PD动物模型中VEGFS/VEGFR的结果,我们讨论了药理学VEGFS/VEGFRS调制的事实相关性,作为这些神经退行性病理学的新型且潜在的疾病修饰方法。特定的VEGFRS靶向旨在选择性VEGFR-1抑制,同时保留VEGFR-2信号转导,似乎是击中AD病理学基础的分子机制的有希望的策略。此外,可以为PD治疗而采用基于治疗的VEGFS方法,以细化其大脑水平以扩大神经营养/神经保护作用,同时限制对血管渗透性的过度影响。
摘要Avapeeda Nasya是一种特殊的程序,旨在处理阿育吠陀中的乌尔达·瓦吉塔·维卡拉斯。在此过程中,新鲜果汁(Swarasa)是通过挤压草药或汤剂来灌输鼻孔的。Shalakya是阿育吠陀的特殊分支,它处理锁骨上方的疾病(Jatru)。旨在通过Sanshamana或Sanshodhan方法来完成Vyadhi-Parimokshana治疗。Panchakarma是Shodhana类型,其中Nasya是一种程序。acharyas提到了NASA HI Shirso Dwaram,这意味着它是Head的门户(用于药物管理)。批判性地评估并理解标准的Avapeeda Nasya是我演讲的重点。Avapeeda Nasya的程序,与Sneha Nasya,作用方式和其他规范的差异在本文中进行了讨论。Avapeeda Nasya充当Shodhana和Shamana。出现大量的doshas时,使用tikshna dravyas清除通道(sroto-shodhana),当使用doshas是轻度或中度的shamana dravyas时。将Doshas从上半身开除,NASA是Shiras的门户。NASYA使用的药物的积极原理到达Shringataka Marma(Sira Marma),并分发给Moordha -Netra -Shrotra -Shrotra -Kantha,从而驱逐了病态的Doshas。药物通过越过鼻粘膜到达目标区域,此后通过神经区,全身循环或淋巴管运输。终止使用的药物具有更高的生物利用度,因为它避免了肝脏和逃避BBB的首次通过机制。
免疫系统,干细胞是免疫茎细胞串扰中的活跃参与者。可以很好地确定肠道或神经干细胞可以通过分泌抗炎因子2,4来调节免疫系统。此外,已经表明,干细胞可以根据其活性水平改变主要组织相容性复合物I(MHC-I)的表面表达来调节其免疫特权状态,因此可以通过CD8 +细胞毒素细胞5。因此,免疫系统和组织驻留干细胞之间的双向串扰对于维持组织完整性和驱动再生至关重要1。然而,这种串扰直到最近才在中枢神经系统(CNS)中探索。与其他组织不同,中枢神经系统在解剖学上受到血脑屏障的保护,支持中枢神经系统是免疫特你的器官6。因此,对免疫 - 茎细胞串扰的调查集中在破坏这种障碍的病理情况上。免疫特权中枢神经系统的概念现在受到了在发育和成年期在健康实质中的外周免疫细胞以及Discoveryf脑膜淋巴管10,11的挑战。此外,在健康的中枢神经系统中已经确定了自适应免疫细胞,它们可以改变CNS干细胞行为12,13。这些报告突出了CNS干细胞和免疫系统串扰的新作用,超出了病理状况,为解决中枢神经系统开发,体内平衡和修复的串扰打开了大门。在这篇综述中,我们将把注意力集中在CNS免疫茎细胞轴上在神经炎症和髓磷脂再生的情况下的作用。
解剖学注释第5节:消化系统消化系统有两个主要组成部分:胃肠道(G.I.)区域以及各种附件结构和器官。G.I.道也称为消化道(“营养”)管道,由从口腔开始的长肌肉管组成,食物进入嘴,继续穿过咽,食管,大肠,大肠和大肠,直肠和肛门,直肠和肛门,浪费被散发为粪便问题。附件结构和器官包括:唾液腺;粘腺;舌头;牙齿肝;胆囊和胰腺。所有这些在消化系统中具有重要功能。沿G.I的长度推动食物。通过G.I.壁上的肌肉层提供的蠕动运动。道。许多附件结构通过分泌酶或物质来帮助该区域,以帮助转化,消化,吸收或运输食物,因为它沿着该区域旅行。胃肠道的主要目的是将大型营养物(聚合物)从摄入的食物中分解为较小的单位(单体)。一旦养分被分解为最小的单位,就可以在上皮上吸收到体内,这些营养素和材料可以通过多种方式使用,包括为人体提供能量。6个基本消化过程1。摄入 - 将食物或饮料带入口腔或口腔。2。推进 - 穿过消化道的运动。3。4。5。6。这包括舌头和脸颊的运动,除了吞咽的肌肉收缩,除了围绕肌肉的蠕动运动和运河产生的空腔所产生的蠕动运动。机械消化 - 食物的物理崩溃(咀嚼,搅动),机械加工和食物的湿润。这是化学消化之前通常需要的。化学消化 - 通过使用人体制造的酶,食物的酶促分解(从复杂到简单的构建块)。这涉及化学键的破裂。吸收 - G.I管腔的消化产物的运输。 穿过上皮衬里以及被认为在体内的血液和淋巴管中。 排便 - 从人体(粪便)中消除了不可消化的材料和废物。 总而言之,机械消化主要发生在口腔和胃中,化学(酶促)消化始于胃(仅蛋白质消化),对于小肠中的所有营养物质而言变得很重要,在小肠中,蛋白质,脂肪和碳水化合物都被一系列enzemes化学地分解为基本的建筑物。 将它们分解为较小的分子(分解代谢),便可以在小肠的上皮上吸收它们,然后进入人体的循环。 大肠在重吸收过量的水和电解质中起关键作用。吸收 - G.I管腔的消化产物的运输。穿过上皮衬里以及被认为在体内的血液和淋巴管中。排便 - 从人体(粪便)中消除了不可消化的材料和废物。总而言之,机械消化主要发生在口腔和胃中,化学(酶促)消化始于胃(仅蛋白质消化),对于小肠中的所有营养物质而言变得很重要,在小肠中,蛋白质,脂肪和碳水化合物都被一系列enzemes化学地分解为基本的建筑物。将它们分解为较小的分子(分解代谢),便可以在小肠的上皮上吸收它们,然后进入人体的循环。大肠在重吸收过量的水和电解质中起关键作用。最后,未消除的材料和分泌的废物产品继续沿着该区域,并通过排便从体内排泄 - 群众运动和消除粪便。
所有小鼠在固定 LD 12:12 周期中活动节律的同步都很稳定,但在暴露于偏移 LD 周期时,活动节律的同步会完全受损。即使在“治疗后”暴露于标准 LD 12:12 条件时,偏移 LD 小鼠的重新同步也以同步模式改变和活动开始时间的日常变化增加为标志,这种变化一直持续到中年。这些明暗同步的改变与中年整个偏移 LD 小鼠组在 Barnes 迷宫测试中的显著受损密切相关,远早于在维持固定 LD 周期的老年(18-22 个月)动物中首次观察到认知衰退。结合昼夜节律失调对认知的影响,中年移位 LD 小鼠的特点是脾脏 B 细胞和表达激活标记 CD69 或炎症标记 MHC II 类不变肽 (CLIP) 的 B 细胞亚型显著扩增,脑膜淋巴管中 CLIP+、41BB-Ligand+ 和 CD74 + B 细胞差异增加,脾脏 T 细胞亚型改变,齿状回中小胶质细胞数量增加且功能状态改变。在移位 LD 小鼠中,脾脏 B 细胞的扩增与认知能力呈负相关;当 B 细胞数量较高时,巴恩斯迷宫的表现较差。这些结果表明,仅与早期接触轮班工作时间表相关的紊乱昼夜节律计时会加速衰老过程中的认知能力下降,同时改变大脑中免疫细胞和小胶质细胞的调节。
背景:机械集中的超声消融策略沸腾的组织疗法(BH)可以引起抗肿瘤免疫的有趣特征。然而,BH对树突状细胞功能的影响尚不清楚,这损害了我们最佳地将BH与免疫疗法结合以控制转移性疾病的能力。方法:使用稀疏的扫描(超声之间的1 mM间距)在双侧和单侧环境中使用B16F10-ZSGREEN黑色素瘤进行应用。同侧和对侧肿瘤生长。流式细胞仪用于跟踪Zsgreen抗原并评估BH如何驱动树突细胞行为。结果:BH单一疗法在这种高度侵略性的模型中引起了同侧和脱支肿瘤的控制。肿瘤抗原在BH后24H时在24H时在肿瘤淋巴结(TDLNS)中的免疫细胞中存在约3倍,但减少了96h。b细胞,巨噬细胞,单核细胞,粒细胞和两个常规的树突状细胞子集(即cdc1s和cdc2s)获得了与BH的更明显的抗原。BH驱动了两个CDC亚群的激活,激活取决于肿瘤抗原的采集。我们的数据还表明,BH-蛋白肿瘤抗原与损伤相关的分子模式(湿)复合,并且CDC不用抗原传播到TDLN。相反,它们会在流经传入的淋巴管进入TDLN时获得抗原。结论:当使用稀疏扫描方案应用时,BH单一疗法会通过几种先前未经批准的机制产生脱离黑色素瘤的控制和树突状细胞功能。这些结果为如何最好地结合BH与免疫疗法以治疗转移性黑色素瘤提供了新的见解。
口腔组织学和胚胎学期末考试的一部分 - 牙科医学(与每个主题相对应的特定学习目标列表可以从组织学和胚胎学系,查尔斯大学皮尔森医学学院的网站上下载)细胞学和基本组织学)1。口腔组织学和胚胎学期末考试的一部分 - 牙科医学(与每个主题相对应的特定学习目标列表可以从组织学和胚胎学系,查尔斯大学皮尔森医学学院的网站上下载)细胞学和基本组织学)1。单元格。细胞周期。有丝分裂。减数分裂。细胞器。2。基底膜。顶部细胞表面及其修饰。细胞连接。侧面细胞表面的修饰。3。组织 - 定义,分类。4。上皮 - 形态学和功能分类,极性。5。涵盖上皮 - 分类和示例。6。腺体。分泌。腺体和腺管的分类。7。浆液和粘液分泌。皮肤的腺体 - 结构,分类。8。一般结构和结缔组织的组成部分。结缔组织的细胞。9。结缔组织的细胞外基质。10。合适的结缔组织 - 组件和分类。11。软骨 - 软骨的类型,其成分。12。骨头 - 组件和分类。骨骼类型。13。骨骼内骨化和骨软骨骨化的发展。14。外周血。形成的血液元素。血数。15。红细胞 - 结构,功能,计数。16。白细胞 - 分类,结构,功能。差异白血计数。17。agranulocytes - 形态和功能。血小板,形态和功能。血栓形成。18。粒细胞 - 形态和功能。19。hemopoiesis - 个体发生和谱系。红细胞生成。20。粒状,淋巴管,单孢子。21。肌肉组织 - 一般特征和分类。22。平滑肌。23。横纹骨骼肌。24。心肌。心脏导电系统。25。神经组织的一般结构。神经元。神经元的类型。26。突触的类型。神经元。髓磷脂的形成。
摘要:结直肠癌 (CRC) 是一种常见且致命的癌症,尽管筛查和化疗取得了进展,但转移性 CRC (mCRC) 往往会导致不良预后。针对血管内皮生长因子 (VEGF) 通路的抗血管生成药物已成为 mCRC 治疗中必不可少的药物。VEGF 抑制剂贝伐单抗是这种情况下使用的第一个药物。然而,耐药性促使人们开发了更具选择性的抑制剂,例如呋喹替尼,一种针对 VEGFR-1、-2 和 -3 的酪氨酸激酶抑制剂 (TKI)。呋喹替尼在临床试验中显示出良好的前景,尤其是用于三线 mCRC 治疗。中国的 III 期 FRESCO 试验证明了其疗效,与安慰剂相比,总生存期 (OS) 和无进展生存期 (PFS) 显著改善,高血压和手足皮肤反应等安全问题也易于控制。FRESCO-2 试验将这些发现扩展到欧洲和北美人群,导致 FDA 最近批准用于先前接受过治疗的 mCRC 患者。呋喹替尼的药效学特征包括对 VEGFR、血管生成和淋巴管生成的强效抑制。它与化疗和免疫检查点抑制剂 (ICI) 等其他治疗方法联合使用时表现出协同作用。当前的研究重点是探索呋喹替尼与 ICI(如 PD-1 抑制剂)的联合使用,以提高治疗效果,尤其是在微卫星稳定 (MSS) CRC 中。正在进行的试验正在研究呋喹替尼与其他疗法联合使用的潜力及其在早期治疗中的应用。虽然前景光明,但仍需要进一步研究以优化其在治疗中的地位并确定预测性生物标志物以更好地选择患者。关键词:呋喹替尼、血管生成、VEGF 抑制剂、难治性 mCRC、三线
GLIDE将开发各种治疗选择,可用于解决淋巴功能障碍的潜在机制的患者;治愈疾病状态或安全地稳定疾病并提供明显的缓解。背景和动机:淋巴系统(LS)是必不可少的身体系统,没有我们无法生存。它由一个复杂的淋巴血管,淋巴结和淋巴器官组成,这些网络几乎在人体的每个组织中几乎每个组织中都起着至关重要的作用。LS的正常结构和功能可以通过先天性疾病(例如原发性淋巴水肿(LE),淋巴肿瘤和畸形)或创伤,癌症,放射线,感染或手术损伤而改变。估计淋巴疾病的完全影响超过1000万美国人(请参阅有关癌症相关淋巴水肿的国家指标报告)。淋巴功能障碍已被进一步证明在常见慢性疾病的病理生理学中起关键作用青光眼,移植排斥和自身免疫性疾病。尽管如此,没有FDA批准的治疗方法 - 疗法或医疗设备,改变了淋巴生长和功能。设计可以针对淋巴系统的疗法非常困难,手术干预措施需要大量的额外训练和技能。淋巴管(LV)是半透明,微小且脆弱的,在解剖学研究中经常被忽略。另外,在整个人体的几乎每个组织/器官中都发现LV,在表型中具有区域异质性。今天,临床医生没有针对淋巴功能障碍的专门配制或优化的药理,基因或细胞疗法。现有的物理干预措施和疗法,例如压缩服或手动缺乏量,是严格的姑息性和麻烦。在过去的几十年中,已经出现了几种对淋巴水肿的手术干预措施,但仍被认为是实验性的,保险范围有限和访问权限。