2。R. S. Sutton和A. G. Barto,增强学习:介绍,第二版,2018年11月R. S. Sutton和A. G. Barto,增强学习:介绍,第二版,2018年11月
深度神经网络是一种复杂的结构化系统,它以并行、分布式和上下文敏感的方式处理信息,而深度学习则是利用这些系统通过依赖经验的学习过程获得与智能相关的能力的努力。在人工智能领域,深度学习的工作通常旨在利用所有可用的工具和资源来创造和理解智能,而不考虑其生物学合理性。然而,深度学习的许多核心思想都从大脑和人类智能的特征中汲取灵感,我们认为这些受大脑启发的系统最能捕捉这些特征(Rumelhart、McClelland 和 PDP 研究小组,1986 年)。此外,深度学习研究中出现的想法可以帮助我们了解人类和动物的记忆和学习。因此,深度学习研究可以看作是研究人员之间相互交流的沃土,这些研究人员研究的相关问题对生物智能和机器智能都有影响。
[1] R. Sutton和A. Barto,《加固学习简介》,麻省理工学院出版社,1998年。[2] C. Szepesvari,《增强学习算法》,Morgan&Claypool Publishers,2010年。[3] C. Watkins,从延迟的奖励中学习,博士学位论文,剑桥大学,英格兰,1989年。[4] M. Wiering和M. Van Otterlo,加固学习:最新的ART,Springer,2014年。[5] M. Puterman,马尔可夫决策过程:离散随机动态编程,Wiley,1994年。[6] D. P. Bertsekas,动态编程和最佳控制,第一卷和II,雅典娜科学,2017年。[7] W. B. Powell,近似动态编程,Wiley,2011年。[8]选定的纸
目前的深度学习算法可能无法在大脑中运行,因为它们依赖于权重传输,即前向路径神经元将其突触权重传输到反馈路径,而这种方式在生物学上可能是不可能的。一种称为反馈对齐的算法通过使用随机反馈权重实现了没有权重传输的深度学习,但它在困难的视觉识别任务上表现不佳。在这里,我们描述了两种机制——一种称为权重镜像的神经回路和 1994 年 Kolen 和 Pollack 提出的算法的修改——这两种机制都允许反馈路径即使在大型网络中也快速准确地学习适当的突触权重,而无需权重传输或复杂的布线。在 ImageNet 视觉识别任务上进行测试,这些机制的学习效果几乎与反向传播(深度学习的标准算法,使用权重传输)一样好,并且它们优于反馈对齐和另一种较新的无传输算法符号对称方法。
最佳运输,也称为运输理论或Wasserstein指标,是一个数学框架,它解决了找到最有效的方法将质量或资源从一个分布转移到另一种分布的最有效方法的问题,同时最大程度地减少了一定的成本函数[1,2,3]。最初在18世纪作为物流和经济学工具开发,最佳运输在现代数学和各种科学学科(包括计算机科学和机器学习)上引起了极大的关注。在其核心方面,最佳运输旨在通过找到将一个分布的质量重新分配以匹配另一个位置的成本,从而量化两个概率分布之间的相似性。这个优雅而多才多艺的概念在不同领域中发现了从图像处理和数据分析到经济学[11]和神经科学的应用,使其成为具有广泛含义的强大而统一的数学工具[12]。
轴突是一种较细的,类似电缆的投影,可以延长数十万,数百甚至数万som的直径的倍数。轴突主要将神经信号远离躯体,并将某些类型的信息带回到其中。许多神经元只有一个轴突,但是这种轴突可能(通常都会)在广泛的分支下,从而可以与许多目标细胞进行通信。从躯体出现的轴突部分称为轴突小丘。除了是解剖结构外,轴突小丘还具有最大的电压依赖性钠通道密度。这使其成为神经元和轴突的尖峰启动区的最容易激发部分。用电生理术语,它具有最负阈值的潜力。
电气和电子工程师协会 › iel7 作者 VHL Lopes · 2022 · 被引用 1 — 作者 VHL Lopes · 2022 被引用 1 与信道建模和仿真相关,特别关注... 采用的块结构可以表示标准的多帧组织。 17 页
医学是深度学习模型的重要应用领域。该领域的研究是医学专业知识和数据科学知识的结合。在本文中,我们引入了一个开放的三维颅内动脉瘤数据集 IntrA,而不是二维医学图像,这使得基于点和基于网格的分类和分割模型的应用成为可能。我们的数据集可用于诊断颅内动脉瘤和提取颈部以进行医学和深度学习其他领域(如正常估计和表面重建)的夹闭手术。我们通过测试最先进的网络提供了一个大规模分类和部分分割的基准。我们还讨论了每种方法的性能,并展示了我们数据集的挑战。发布的数据集可以在这里访问:https://github.com/intra3d2019/IntrA。
NAVFAC 开放环境修复资源 (OER2):确定 MEC/MPPEH 水下埋藏深度的方法军用弹药被发现在某些水下位置,这是历史处置活动以及实弹训练、测试和其他操作的结果。在水下环境中仍能发挥作用的射弹和其他弹药构成爆炸危险,可能会迁移,使人员接触到这些弹药。这种爆炸危险的管理很复杂,取决于特定地点的考虑因素,例如弹药类型、海洋环境、移动潜力以及人员如何接触和与弹药互动。本次网络研讨会的目的是总结为了解水下环境中弹药的移动性和埋藏而开发的科学。将介绍环境观测、弹药观测技术、移动性和埋藏现场观测、移动与埋藏的物理学以及埋藏的物理过程建模。演示将以将这些知识在现有场地的实际应用结束。 演讲者:Bryan Harre,NAVFAC EXWC 和 Joe Calantoni,美国 NRL 博士 日期:2022 年 11 月 9 日,星期三 时间:太平洋时间上午 11 点 | 美国东部时间下午 2 点 通过以下链接注册参加网络研讨会:https://einvitations.afit.edu/inv/anim.cfm?i=697664&k=0468450F7D53 如果您无法点击链接,请将地址复制并粘贴到您的网络浏览器中。 州际技术与监管委员会 (ITRC) 关于可持续弹性修复 (SRR) 的网络研讨会 极端天气事件会对修复措施保护人类健康和环境的能力产生不利影响。可持续弹性修复 (SRR) 被定义为“清理和再利用危险废物场地的优化解决方案,可限制负面影响、最大化社会和经济效益并增强对日益增加的威胁的抵御能力”。该网络研讨会介绍了一些工具,可帮助将可持续和有弹性的实践融入修复项目中。主题:可持续的弹性修复演讲者:ITRC 日期:2022 年 11 月 17 日时间:太平洋时间上午 10 点 | 美国东部时间下午 1 点通过以下链接注册参加 ITRC 网络研讨会:https://clu-in.org/conf/itrc/SRR/有关更多信息,请查看 ITRC 关于此主题的报告:https://srr-1.itrcweb.org/ RPM 培训活动主题的最后一次征集 RPM 培训主题的最后一次征集:现在到 2022 年 11 月 16 日链接:https://einvitations.afit.edu/inv/anim.cfm?i=699708&k=04684B0E7B5F RPM 培训日期更新:2023 年 3 月 14 日至 16 日*这与原始/预计日期不同* 正在评估场地,活动举办批准将决定最终日期和地点。