摘要。严肃游戏已经存在了很长时间,信息技术的发展和社会的数字化在过去 20 年中促进了严肃游戏的发展。机器人技术、虚拟现实或人工智能都可以为学习者提供更多设施,同时也为教师提供更多知识,教师可以按照每个学习者的步调传授必要的知识。严肃游戏中的人工智能增强了它们的吸引力,但最重要的是应该有助于改善通过严肃游戏传递的学习成果。在本研究中,我们将提出严肃游戏的定义,同时介绍严肃游戏在不同领域和不同目标中的用途多样性。人工智能的定义及其为提高严肃游戏效率提供的可能性。我们将重点关注欧洲开源市场“gamecompenents.eu”以及我们的项目,通过开发一些严肃的迷你游戏,将其部分人工智能模块集成到我们的自适应教学超媒体模型中。
●1782-1852 Friedrich Froebel-创造了幼儿园一词的德国哲学家。创建了弗罗贝尔礼物,以证明孩子们通过玩耍学习。●1856-1959西格蒙德·弗洛伊德(Sigmund Freud) - 在“小汉斯”的情况下,弗洛伊德建议玩。●1871- 1924年,Hermine von Hug Hellmuth-成为第一个通过Talk and Leat 1890-1973正式对待儿童的人,Margaret Lowenfeld-左左儿科开始开始对儿童进行精神病治疗。Lowenfeld后来确定了世界技术可以与所有年龄一起使用。玛格丽特·洛芬费尔德(Margaret Lowenfeld)的儿童心理治疗方法 - YouTube●1882- 1960年,梅兰妮·克莱因(Melanie Klein) - 第一个游戏治疗师之一,鼓励儿童使用玩具和玩材料●1895- 1982年,安娜·弗洛德开发●1904- 1990年Dora Kal虫 - Jungian Sandplay治疗师去了玛格丽特·洛芬菲尔德(Margaret Lowenfeld)学习。https://www.youtube.com/watch?v=WT40DMH70C●1911-1988弗吉尼亚轴线 - 基于Carl Rogers中心运动 - 非指导性游戏治疗1960-1970 1970 - 1970年Gary Landreth - 在世界上最大的游戏培训中心的创建者,在世界上的最大培训培训中心 - 在世界上的最大培训中心 - 在世界上培训 - 培养1980-190-190-190-190-190-190-190-190-190-190-190-190-190-190-190-190-190-190-190-190-190-190-190-190-190-190-190-190-190-190--规范“注册游戏治疗师” 2000年至今的APT扩展,并增加了PR的PR进行游戏疗法 - 强调游戏疗法的研究和效率 - 专门针对2009年实施的监督法规
•董事职位,包括在公司或组织中担任的非执行董事。•私营公司,企业或咨询公司的所有权或部分所有权可能或可能寻求与NZ Fish&Game开展业务。•对任何提供或可能为Fish&Game NZ提供服务或支持的公司/组织的任何兴趣。•与他们或与他们联系的任何人的合同具有任何金钱利益,直接或间接的任何利益,理事会成员应尽快在可行的情况下向NZ NZ发出通知来宣布其权益。
量身定制的数字游戏化对于提高学生参与度和学习成果具有重要意义。然而,越南讲师对它的采用仍然有限。这项定性研究调查了他们不愿接受量身定制的数字游戏化的原因,并探讨了文化因素的作用。研究人员对越南六所大学的讲师进行了采访。研究结果显示,讲师们更喜欢传统的教学方法,因为他们熟悉这些方法并认为这些方法有效。采用的障碍包括感知到的复杂性、缺乏培训和对内容开发的担忧。此外,还发现等级制度、游戏感知和集体主义等文化因素显著影响讲师对游戏化的态度。这项研究对阻碍越南大学采用数字游戏化的复杂挑战和因素提供了至关重要的见解,为制定有针对性的干预措施提供了信息,以促进数字游戏化成功融入越南环境。
鱼,包括27,000多种,代表了最古老的脊椎动物群,并具有先天和适应性免疫系统。大多数野生鱼类对寄生虫感染和相关疾病的敏感性是良好的。在所有脊椎动物中,消化道创造了一个非常有利且营养丰富的环境,进而使其容易受到微寄生虫和大型岩石岩的影响。因此,后生寄生虫成为重要的疾病药物,影响了野生和耕种,并导致了大量的经济损失。鉴于它们作为致病生物的地位,这些寄生虫值得关注。helminths是一个涵盖蠕虫的一般术语,构成了鱼类中最重要的后生寄生虫组之一。该组包括各种铂金(Digeneans,cestodes),线虫和阿甘特氏菌(Acanthocephalans)。此外,在水存在的无脊椎动物和脊椎动物宿主中发现了粘菌素,微观的后生动物内植物。值得注意的是,在纤维的消化道和某些内脏器官(例如肝脏,脾脏和性腺)中的几个先天免疫细胞在对寄生虫的免疫反应中起积极作用。这些免疫细胞包括巨噬细胞,嗜中性粒细胞,Rodlet细胞和肥大细胞,也称为嗜酸性粒细胞。在肠道感染部位,蠕虫通常会影响粘液细胞的数量并改变粘液组成。本文概述了消化道中先天免疫细胞和不同寄生虫系统中先天免疫细胞的发生和特征的概述。尤其是来自采用免疫组织化学,组织病理学和超微结构分析的研究提供的数据,提供了证据,提供了支持定位植物先天免疫细胞参与的互动症调节对中唑和原生动物寄生虫感染的炎症反应的证据。
计算机科学 (CS) 对日常生活的影响无可否认,这促使人们做出巨大努力,让每个人都能接受计算机科学教育。随着 CS 教育的进步,人们逐渐认识到计算不仅仅是编码,而应该注重解决问题的技能。科学界这一进步的一个里程碑是回顾“计算思维 (CT)”一词的观点,并主张它包括每个人都应该学习的通用技能,而不仅仅是 CS 专业人士 [Wing 2006]。一些流行且成功的教授/学习 CS 和培养 CT 技能的方法包括可视化编程活动 [Hu et al. 2021];游戏化编程环境/编程游戏 [Lindberg et al. 2019]。它们通常与创客文化相一致,将学习者视为创造者,而不仅仅是消费者 [Martin 2015]。
摘要 本研究的目的是研究电脑游戏(益智游戏 Moument Valley 和模拟游戏 SimCity)对患有特定学习障碍(阅读、写作、数学)学生的工作记忆和空间视觉感知的影响。本研究的调查是半实验研究,前测和后测采用单组,统计方法为混合方差分析。统计人群是德黑兰复活四所女孩 Maad 小学三年级、四年级、五年级、六年级的全部 216 名学生,其中 10 人通过随机抽样和可用抽样进行测量。为了收集信息,使用了(Susan pickering 工作记忆测试、Visconsin 卡片分类测试和 Frostig 测试)。结果表明,特定学习障碍(阅读、写作、数学)学生与正常学生在工作记忆和空间视知觉等方面存在差异,而电脑游戏(益智游戏 Moument Valley 和模拟游戏 SimCity)对特定学习障碍(阅读、写作、数学)学生的工作记忆和空间视知觉有影响。 关键词:工作记忆 空间视知觉 学习障碍 电脑游戏 引言 特定学习障碍是指一组异质性障碍,其特征是在言语、阅读、写作、答题或数学技能的习得和使用上存在显著差异。学习障碍是一种在使用口头或书面语言方面存在一种或多种显著障碍,在听、想、说、读、写、拼写或进行数学计算的能力上存在缺陷。特定学习障碍是一种影响儿童接收、处理、分析或存储信息能力的问题。这种障碍会使儿童难以阅读、写作、拼写或解决数学问题 [1]。学生特定学习障碍的主要特征包括:自然智力水平、学习成绩低于预期、学习速度慢、认知发展、教育基础重复、学习水平差异、不同学习、课程学习。能力和技能之间存在显著差异,注意力范围狭窄[2]。换句话说,他们尽管智力正常,却无法学习,虽然成长的各个方面与生物成熟度有直接关系,但一般认为生物和非生物因素都可以发挥作用[3]。人类的学习工具随着环境而变化。如果今天的儿童和青少年
目的:基于Vygotsky的社会文化理论,讨论在心脏探索逮捕中使用严重游戏的教学基础。方法:关于LEV Vygotsky的社会文化理论的理论反射研究,用于使用教育技术,例如认真游戏,通过探索性阅读科学文献,理论和协作作者的作品。反思的综合:获得了两类讨论:社会历史文化理论和Lev Vygotsky在教学过程中的假设;以及在心脏呼吸骤停的背景下使用严重的游戏作为社会学习工具。结论:该研究允许讨论Vygotsky理论家的认知中介,仪器,符号,语言和发展区的概念,以及认真游戏的概念要素,使他们结盟,以了解教学过程是如何通过在多种护理能力中的发展中置于多种护理能力中的教育目标而发生的,以置于多种护理能力中。
摘要 - 量子交换机(QSS)服务量子通信网络中量子端节点(QCN)提交的请求,这是一个具有挑战性的问题,这是一个挑战性的问题,由于已提交请求的异构保真要求和QCN有限的资源的异质性保真度要求。有效地确定给定QS提供了哪些请求,这是促进QCN应用程序(如量子数据中心)中的开发。但是,QS操作的最新作品已经忽略了这个关联问题,并且主要集中在具有单个QS的QCN上。在本文中,QCN中的请求-QS关联问题是作为一种匹配游戏,可捕获有限的QCN资源,异质应用程序 - 特定的保真度要求以及对不同QS操作的调度。为了解决此游戏,提出了一个量表稳定的request-QS协会(RQSA)算法,同时考虑部分QCN信息可用性。进行了广泛的模拟,以验证拟议的RQSA算法的有效性。仿真结果表明,拟议的RQSA算法就服务请求的百分比和总体实现的忠诚度而实现了几乎最佳的(5%以内)的性能,同时表现优于基准贪婪的解决方案超过13%。此外,提出的RQSA算法被证明是可扩展的,即使QCN的大小增加,也可以保持其近乎最佳的性能。I. i ntroduction量子通信网络(QCN)被视为未来通信技术的支柱,因为它们在安全性,感知能力和计算能力方面具有优势。QCN依赖于Einstein-Podolsky-Rosen(EPR)的创建和分布,这是遥远QCN节点之间的纠缠量子状态[1]。每个EPR对由两个固有相关的光子组成,每个光子都会转移到QCN节点以建立端到端(E2E)纠缠连接。然而,纠缠光子的脆弱性质导致指数损失,随着量子通道(例如光纤)的行驶距离而增加。因此,需要中间量子中继器节点将长距离分为较短的片段,通过对纠缠的光子进行连接以连接遥远的QCN节点[2]。当此类中继器与多个QCN节点共享多个EPR对以创建E2E连接时,它们被称为量子开关(QSS)。