(µg/cm 2 /min) 1-丁醇 (99) 192.1 1.2 179 3.2 丙烯酰胺 (40) >480 0.07 >480 0.01 氯仿 (70) 0 — 0 — 柠檬酸 (70) >480 <1.0 >480 <1.0 柠檬酸一水合物 (30) >480 N/A >480 N/A 环己烷 (99.7) 52.5 9.6 >480 0.8 二甲基甲酰胺 (99) 0 — 0 — 二甲基亚砜 (99) 5.5 — 10.6 — 乙醇 (70) 27.6 16 43.8 11.6 乙醇 (99) 18.7 5.20E+01 32.1 73.8 乙锭溴化物 (1) >480 N/A >480 N/A 甲醛 (37) >480 N/A >480 N/A 戊二醛 (50) >480 N/A >480 N/A 一水合肼 (55) >480 0.08 >480 N/A 盐酸 (30) >480 N/A >480 N/A 过氧化氢 (30) 36 1.4 78.7 0.8 异丙醇 (70) 194 1.7 185 2.6 异丙醇 (99) 361 1.2 280.2 1.4 Klercide 70/30 IPA (N/A) 141 2 163.7 2.2 Klericide 中性清洁剂 (N/A) >480 N/A >480 N/A Klericide 杀孢子剂活性氯 (N/A) >480 N/A >480 N/A 甲醇 (99) 1.2 57.6 9 50.7 硝酸 (65) 15 8.90E+04 25.4 3.60E+04 过氧乙酸 (5) >480 N/A >480 N/A 磷酸 (70) >480 <1.0 >480 <1.0 氢氧化钠 (50) >480 N/A >480 N/A 次氯酸钠 (10-13%) >480 N/A >480 N/A Spor-Klenz (N/A) >480 0.0043 >480 N/A 硫酸 (50) >480 N/A >480 N/A
摘要目的:肾细胞癌 (RCC) 是最常见且致命的泌尿系统恶性肿瘤,发生远处转移的预后不佳。褪黑素被认为是一种针对多种恶性肿瘤的潜在抑癌剂,索拉非尼已被认为是治疗 RCC 的药物,但褪黑素和索拉非尼对人 RCC 的协同作用尚未阐明。材料和方法:用褪黑素联合索拉非尼处理人肾癌细胞系 (Caki-1 和 ACHN),通过 3-(4,5-二甲基噻唑-2-基)-2,5-二苯基四唑溴化物测定和流式细胞术检测细胞生长和细胞周期。通过体外迁移和侵袭试验检测细胞迁移/侵袭能力。通过定量逆转录聚合酶链反应和蛋白质印迹法测量 RCC 细胞中转移相关蛋白 2 (MTA2) 的蛋白质和 mRNA 表达。使用 TISIDB 软件从 Cancer Genome Atlas 数据库中分析 RCC 组织中 MTA2 的临床意义。结果:结果显示,褪黑素联合索拉非尼、索拉非尼或褪黑素单独治疗均未诱导人 RCC 细胞和 HK2 细胞的细胞毒作用或细胞周期停滞。此外,褪黑素和索拉非尼联合治疗通过协同抑制 MTA2 表达协同降低人 Caki-1 和 ACHN 细胞的迁移和侵袭。生物信息学分析显示,MTA2 表达与人 RCC 中的总生存期(P < 0.002)、肿瘤分级(P < 0.001)和肿瘤分期(P < 0.001)显着相关。结论:我们的结果表明,褪黑素和索拉非尼联合使用可通过抑制 MTA2 显著降低 RCC 细胞的迁移和侵袭能力。我们认为这种新颖的组合策略对于治疗 RCC 具有良好的前景,但仍需要进一步研究。
Chemistry Element Unit Lab Result Chemistry Element Unit Lab Result Aluminum (Al) mg/L 0.3 Silver (Ag) mg/L 0.01 Antimony (Sb) mg/L 0.02 Sodium (Na) mg/L 237 Arsenic (As) mg/L 0.03 Strontium (Sr) mg/L 1.9 Barium (Ba) mg/L 0.15 Tantalum (Ta) mg/L 0.01铍(BE)mg/L 0.01 TIN(SN)mg/L 0.01二晶型(BI)mg/l 0.01钛(Ti)mg/l 0.01硼(b)mg/l 0.42 0.42含0.42凡帕(V)vanadium(v)mg/l 0.02 cadmium(cad)mg/l 0.01 mg/l 0.01 mg/zn 0.01 mg/zn zn 0.01 mg/zn 0.01 mg/zn 0.01 mg/zn 0.01 mg/zn 0.01 mg/l 0.01 mg/zn。 72锆(Zr)mg/L 0.01铬(CR)mg/l 0.38铵(NH4+)mg/L 2.5钴(CO)Mg/L 0.02溴化物(BR-)Mg/L 0.23 COPPER(CU)COPPER(CU)MG/L 1.2氯化物(Cu)mg/l 1.2氯化物(Cl-)Mg/l 3557.0 GALDIUM(Cl-)MG/L 30.4 Gallium(Cl-)MG/L 30.4 Gallium(Cl-l 30.4 Gallium) (F-)Mg/L 1.1锗(GE)mg/L 0.01硝酸盐(NO3-)Mg/L 35铁(Fe)Mg/L 0.1磷酸盐(PO4 X-)Mg/L 0.5铅(Pb)Mg/L 0.5
该药物受到其他监测。这将允许快速识别新的安全信息。您可以通过报告可能获得的任何副作用来提供帮助。有关如何报告副作用,请参见第4节的结尾。在收到此药物之前,请仔细阅读所有这些传单,因为它包含了重要的信息。- 保留此传单。您可能需要再次阅读。- 如果您还有其他问题,请询问您的医生,药剂师或护士。- 如果您有任何副作用,请与您的医生,药剂师或护士交谈。这包括此传单中未列出的任何可能的副作用。请参阅第4节。此传单中的内容1。什么是佐剂三价流感疫苗seqirus,以及它用于2。在收到辅助三价流感疫苗Seqirus 3。如何给出佐剂的三价流感疫苗Seqirus 4。可能的副作用5。如何存储佐剂三价流感疫苗Seqirus 6。包装和其他信息的内容1。辅助三价流感疫苗Seqirus是什么,以及用于辅助三价流感疫苗seqirus的辅助疫苗是一种针对流感的疫苗(流感)。当一个人获得疫苗时,免疫系统(人体的自然防御系统)将自行保护对流感病毒。疫苗中的所有成分都不会引起流感。该疫苗用于预防50岁及以上的成年人的流感。2。根据世界卫生组织在2024/2025季节的建议,该疫苗针对三种流感病毒菌株。What you need to know before you receive Adjuvanted Trivalent Influenza Vaccine Seqirus You should not receive Adjuvanted Trivalent Influenza Vaccine Seqirus - If you are allergic to the active ingredients or any of the other ingredients of this medicine (listed in section 6) egg or chicken proteins (such as ovalbumin), kanamycin and neomycin sulphate,甲醛,氯三铵溴化物(CTAB)和氢化可的松,它们是制造过程中的痕量残基。- 如果您发生了严重的过敏反应(例如过敏症)先前的流感疫苗接种。
金属卤化物钙钛矿是多期光伏应用的有希望的光吸收器,因为它们具有出色的带隙可调性,通过在卤化物位点上的组成混合而实现。然而,宽带混合壁的钙钛矿与电荷萃取层之间界面处的能量水平对齐不良仍然会导致太阳能电池性能的显着损失。在这里,研究了这种损失的起源,重点是价值频带最大值和最高占用分子轨道(HOMO)之间的能量级别的未对准,通常使用的组合(fa 0.83 cs 0.83 cs 0.17 pb(i 1-x br x)3,溴化物含量为0到1,以及bromide content x ranging x ranging x ranging x聚[Bis(4-苯基)(2,4,6-三甲基苯基)胺](PTAA)。时间分辨光发光光谱和电荷载体动力学的数值模型的组合表明,与能量水平的不断变化相关的开路电压(V OC)损失(V OC)损耗来自PTAA的孔中的增加孔的增加,然后在PTAA的同质体中增加了孔中的孔,然后将其跨层次置于整个界面上,从而通过跨界面进行重新介绍。模拟假设与FA 0.83 CS 0.17 Pb(I 1-X BR X)配对的孔传输材料是理想的选择,3表明,这种源自能量级别未对准的V OC损耗可将其降低高达70 mV。这些发现突出了迫切需要使用带有宽带的混合壁式甲虫的量身定制的电荷萃取材料,以改善了能量水平的对准材料,以使能够改善功率转换功能的太阳能电池。
化疗无法消灭癌细胞,主要是因为药物不能选择性地在肿瘤部位积聚,而这也会影响健康细胞。在本研究中,我们研究了磁铁矿纳米结构脂质载体 (NLC),以便将姜黄素靶向递送到乳腺癌细胞中。采用共沉淀法,在碱性介质中将 FeCl 2 和 FeCl 3 以适当的比例混合,制备超顺磁性氧化铁纳米粒子 (SPION)。所得磁流体非常稳定且具有高磁性。为了制备含有 NLC (NLC-SPION)、十六烷基棕榈酸酯和鱼肝油的 SPION,分别使用 Tween 80 和 span60 作为固体脂质、液体脂质、表面活性剂和助表面活性剂。将抗癌药物姜黄素负载于NLC-SPIONs(CUR-NLC-SPIONs)中,评价其粒径、zeta电位、多分散指数(PDI)、药物包封率、载药量和热稳定性等特性。结果表明,CUR-NLC-SPIONs的平均粒径为166.7±14.20nm,平均zeta电位为-27.6±3.83mv,PDI为0.24±0.14。所有制备的纳米粒子(NPs)的包封率为99.95±0.015%,载药量为3.76±0.005%。通过透射电子显微镜(TEM)进行形态学研究,表明NPs呈球形。 3-(4,5-二甲基噻唑-2-基)-2,5-二苯基四唑溴化物 (MTT) 测定细胞活力证明,合成的 CUR-NLC-SPION 对人类乳腺癌细胞具有比游离姜黄素更好的细胞毒活性。这种新型药物输送系统受益于超顺磁性,可作为开发新型生物相容性药物载体的合适平台,并有潜力用于靶向癌症治疗。
通过在所有位点(A、B 和 X)进行阴离子/阳离子工程可调节性质,使该类材料对下一代器件具有吸引力。据报道,VOP 有许多不同的离子组合,其中 i)A 位主要含有 Cs + 、Rb + 、K + 或铵有机阳离子,ii)B 位含有 Sn 4 + 、Ti 4 + 、Zr 4 + 、Te 4 + 、Sb 4 + 、Pt 4 + 、Ru 4 + 或 Pd 4 + 以及 iii) X 位含有 Cl − 、Br − 或 I −。[11,15–19] 值得注意的是,只有 Pt 4 + 和 Pd 4 + 样品在水介质中是稳定的。[11,12,15] 但是,可以利用在这些化合物中采用的策略来调节所需的性质。在钛基钙钛矿 Cs 2 TiI x Br 6-x 中,通过将 x 值从 0 变为 6 来系统地调整混合卤化物材料,可使光学带隙从 1.38 eV 变为 1.78 eV。[18] 类似地,在钯基纳米粒子钙钛矿中,随着卤素从溴化物变为碘化物,带隙变窄,这些材料已成功用于光催化。[20] 在我们最近的一项工作中,提出了阴离子交换法来创建核壳异质结构,其中核和壳具有不同的卤素。[15] 这些结构已被证明可以增强光生载流子分离。同样,Cs 2 Sn 1 − x Te x I 6 中的 Sn/Te 比已被证明会影响电导率、载流子迁移率和载流子浓度。 [21] Cs 2 SbBr 6 中混合价数(III 和 V)的存在为调整光电性能提供了另一个机会。[22] 用 Te 4 + 取代 Cs 2 ZrCl 6 已显示出光致发光量子产率的显著提高。[23,24] 类似地,据报道混合 Sn/Pt 空位有序钙钛矿的发射性能有所增强。[25] 在大多数已报道的钙钛矿中,
摘要:乳腺癌是一种异质性疾病,具有不同的内在亚型。乳腺癌中最具侵袭性的亚型——三阴性乳腺癌(TNBC)具有高度异质性和转移率、预后不良以及由于缺乏雌激素受体、孕激素受体和人表皮生长因子受体2而缺乏治疗靶点的特点。靶向治疗已被批准用于许多其他癌症甚至其他乳腺癌亚型,但TNBC的治疗选择仍然主要局限于化疗。因此,需要新的、更有效的治疗方案。联合化疗与两种或两种以上的活性药物被认为是一种有前途的抗肿瘤工具,以获得更好的治疗反应并减少治疗相关的不良反应。该研究表明,在BT-549、MDA-MB-468和HCC1937 TNBC细胞系中,常用于TNBC治疗的细胞抑制剂紫杉醇(PAX)和sirtuin抑制剂:cambinol(CAM)具有拮抗作用。通过精确而严格的药效动力学方法-等效线分析确定药理相互作用的类型。分别利用 3-(4,5-二甲基噻唑-2-基)-2,5-二苯基四唑溴化物 (MTT) 和 5-溴-2 ' -脱氧尿苷 (BrdU) 测定法确定 CAM 单独使用或与 PAX 联合使用的细胞毒性和抗增殖作用。通过流式细胞术 (FACS) 确定单独或联合使用 PAX 和 CAM 治疗后 TNBC 细胞系中细胞凋亡的诱导情况,即具有活性 caspase-3 的细胞数。据观察,两种药物单独使用均会抑制细胞增殖并诱导细胞凋亡;然而,联合使用它们可改善所有分析的 TNBC 细胞系中的抗增殖和促凋亡作用。我们的结果表明,CAM 和 PAX 联合使用会产生拮抗作用,从而限制抗癌功效,并显示出临床前测试的重要性。
摘要目的:磷酸肌醇3-激酶/蛋白激酶AKT/哺乳动物雷帕霉素靶蛋白信号通路对细胞正常代谢和细胞生长至关重要。然而,该通路的异常激活与乳腺癌的进展和转移有关。最近,长链非编码RNA在干扰参与细胞生长和代谢的细胞信号通路中的作用已被发现。HOX反义基因间RNA是一种长链非编码RNA,其异常表达与乳腺癌的发展、治疗耐药和转移有关。本研究旨在调查长链非编码RNA HOX反义基因间RNA是否与乳腺癌细胞中的磷酸肌醇3-激酶/蛋白激酶AKT/哺乳动物雷帕霉素靶蛋白信号通路有关。方法:利用siRNA沉默乳腺癌细胞系MCF-7中的HOX反义基因间RNA。随后,使用实时RT-PCR评估HOX反义基因间RNA、PI3K、AKT和mTOR的基因表达水平。此外,使用3-(4,5-二甲基噻唑-2-基)-2,5-二苯基四唑溴化物)分析法分析细胞增殖。结果:结果显示,与阴性对照相比,HOX反义基因间RNA敲低可以下调MCF-7细胞中PI3K、AKT和mTOR RNA的表达。此外,HOX反义基因间RNA沉默后乳腺癌细胞的增殖显着降低。结论:本研究可能引入HOX反义基因间RNA作为参与乳腺癌细胞中磷酸肌醇3-激酶/蛋白激酶AKT/哺乳动物雷帕霉素靶蛋白信号通路上调的分子,从而可能促进乳腺癌细胞增殖。关键词:MCF-7细胞。HOTAIR长链非编码RNA。RNA。长链非编码。基因表达。
摘要:T-2毒素为A型单端孢霉烯族毒素。为了降低T-2毒素的副作用并提高其肿瘤靶向性,本研究制备并表征了T-2毒素pH敏感脂质体(LP-pHS-T2)。以T-2毒素为对照,采用3-(4,5-二甲基噻唑-2)-2,5-二苯基四唑溴化物法检测LP-pHS-T2对A549、Hep-G2、MKN-45、K562和L929细胞系的细胞毒性。研究了LP-pHS-T2对Hep-G2细胞的凋亡和迁移影响。LP-pHS-T2的制备工艺涉及以下参数:二棕榈酰磷脂酰胆碱:二油酰磷脂酰乙醇胺,1:2;总磷脂浓度20 mg/ml,磷脂:胆固醇3:1,4-(2-羟乙基)-1-哌嗪乙磺酸缓冲液(pH 7.4),10 ml,药脂比2:1,超声10 min后挤压,包封率达95±2.43%。挤压后LP-pHS-T2平均粒径为100 nm,透射电镜观察显示LP-pHS-T2呈圆形或椭圆形,大小均匀。释放曲线呈现两阶段下降趋势,前6 h T-2毒素快速渗漏(释放量~20%),随后持续释放至48 h(释放量~46%),48-72 h渗漏率增加(释放量~76%),72 h时达到最低。当LP‑pHS‑T2浸泡在0.2 mol/l磷酸二钠‑磷酸二氢钠缓冲液(pH 6.5)中时,释放速度明显加快,释放率可达91.2%,表现出较强的pH敏感性。抗肿瘤试验表明,LP‑pHS‑T2能够促进Hep‑G2细胞凋亡,抑制其迁移。本研究为基于T‑2毒素的抗癌药物的开发提供了一种新方法。