功能蛋白与微透明剂的精确和高分辨率耦合对于制造微型生物电子设备至关重要。此外,微电极的电化学对电化学分析和传感器技术产生了重大影响,因为微电极的尺寸较小会影响分析物的径向扩散通量,从而提供了增强的质量传输和电极动力学。然而,与这种微电子相关的工艺技术与通常使用的召集生物结合技术之间存在了巨大的技术差距。在这里,我们使用溶剂辅助的蛋白质 - 麦克塞尔吸附印刷(GPS)进行了高分辨率和快速的几何蛋白自我图案(GPS)方法,以将夫作生物分子送到微电源上,以最小特征大小为5μm,并且打印时间约为一分钟。GPS方法用于微观的多种生物分子,包括酶,抗体和抗生物素生物素化的蛋白质,可提供良好的几何比对并保留生物学功能。我们进一步证明,用于葡萄糖检测的酶偶联的微电极表现出良好的电化学性能,从GPS方法中受益,可以最大程度地提高生物接口处有效的信号转导。这些微电极阵列保持了快速收敛分析物扩散,显示典型的稳态I - V特性,快速响应时间,良好的线性灵敏度(0.103 Na mm-2 mm-2 mm-1,r 2 = 0.995)和超宽线性动态范围(2 - 100 mm)。我们的发现为生物分子与微电体阵列的精确耦合提供了一种新的技术解决方案,对诊断,生物燃料细胞和生物电机设备的规模和生产具有重要意义,这些设备无法经济地实现其他现有技术。
在您或您的孩子接种疫苗之前,请仔细阅读本说明书的全部内容。 - 保留本说明书。您可能需要再次阅读。 - 如果您有任何其他问题,请咨询您的医生、护士或药剂师。 - 此疫苗是为您开的。请勿将其传给他人。 - 如果任何副作用变得严重,或者您注意到本说明书中未列出的任何副作用,请告知您的医生、护士或药剂师。本传单内容: 1. 什么是狂犬病疫苗 BP 及其用途 2. 接种狂犬病疫苗 BP 之前 3. 如何接种狂犬病疫苗 BP 4. 可能的副作用 5. 如何储存狂犬病疫苗 BP 6. 更多信息 1. 什么是狂犬病疫苗 BP 及其用途 狂犬病疫苗 BP 适用于所有年龄组的狂犬病暴露前预防和暴露后预防。狂犬病疫苗 BP 是疫苗类药物中的一种。疫苗用于预防传染病。这种疫苗有助于保护成人和儿童免受狂犬病的侵害。狂犬病疫苗 BP 有两种使用方式:
研究人员更加关注利用离子液体 (IL) 和深共熔溶剂 (DES) 来发展新的载体系统。11 遗憾的是,离子液体和深共熔溶剂表现出热不稳定性、药物负载水平低、药物释放和溶解度低,并且与生物系统的相互作用非常弱,并且具有毒性。这个问题可以通过利用天然深共熔溶剂 (NADES) 来克服。NADES 是一种高度生物相容性的材料,旨在用作载体分子,将药物运送到特定位置而不会产生任何副作用;它是一种由次级代谢产物制备的无毒溶剂,不会影响药物释放机制。12 酚类、萜类、黄酮类和其他天然化合物等次级代谢产物对药物应用至关重要。13,14
锂离子电池对社会产生了巨大影响,最近获得了诺贝尔化学奖 1、2。经过几十年的商业化,锂离子电池正迅速接近其能量密度的理论极限,从而推动了锂金属化学的复兴 3-6。然而,锂金属电池的推广应用受到其循环寿命较短的困扰 4、5。锂金属和电解质之间无法控制的副反应形成化学不稳定、机械易碎的固体电解质界面相 (SEI)。SEI 在循环过程中容易破裂,导致树枝状生长、“死锂”形成和不可逆的锂库存损失 4。电解质工程可以调整 SEI 结构和化学性质,使其成为实现锂金属负极的关键且实用的方法 7、8。对于一种有前景的电解质,必须同时满足几个关键要求 9 – 11 :(1)始终如一的高库仑效率(CE)以最大限度地减少锂的损失,包括在初始循环中,(2)在贫电解质和有限过量锂条件下的功能性以实现最大比能量,(3)对高压正极的氧化稳定性,(4)合理的低盐浓度以实现成本效益和(5)高沸点和不可燃性以确保安全性和可加工性。电解质工程方面的最新研究提高了锂金属电池的循环性,包括盐添加剂优化 12 、溶剂比例修改 13 、 14 和液化气电解质 15 。特别是,高浓度电解质 16、17 和局部高浓度电解质 11、18 – 22 被认为是最有效的方法。高浓度电解质成功减少了 Li + 溶剂化结构中的游离溶剂分子,从而形成了以无机为主的 SEI 和更好的锂循环性能。整个系列
除了上述技术外,PNNL 还拥有丰富的专业知识,可以定制适用于废弃 CO 2 和其他酸性气体的催化工艺。将这些产品转化为低碳燃料或化学原料可以为碳利用提供一条经济有效的途径,特别是对于重要的商品产品,例如甲醇。例如,PNNL 研究人员使用基于壳聚糖/PEG 200 的捕获溶剂介质从捕获的二氧化碳中制造甲醇,壳聚糖/PEG 200 是从废弃的虾壳中提取的。这是一种绿色替代品,可以替代毒性更大的碳转化解决方案,使用壳聚糖和氨与氢气代替捕获的二氧化碳来制造有价值的化学品。
新疆师范大学化学化工学院,乌鲁木齐 830054 新疆,中国 * 电子邮件:suzhixj@sina.com 收稿日期:2019年11月8日 / 接受日期:2020年1月9日 / 发表日期:2020年5月10日 电极废弃物 LiNi 0.5 Co 0.2 Mn 0.3 O 2 回收的关键是有效地将正极材料与金属Al箔分离,以提高回收率。本文描述的方法利用有机溶剂与聚偏氟乙烯 (PVDF) 的相容性、超声波引起的空化和对流效应以及 PVDF 的分解温度。探索了超声处理持续时间、有机溶剂类型、有机溶剂与正极材料的比例、搅拌温度、搅拌时间、超声处理和搅拌顺序以及煅烧温度,以确定最佳条件。由此确定最佳剥离效率约为 93 %。将经有机溶剂预处理后的正极材料进行煅烧,通过 600 ℃煅烧有效去除 PVDF 粘结剂,在 800 ℃煅烧可得到具有合适层状结构和最好电化学性能的正极材料,首次放电比容量为 164.2 mAh g -1 。经过 50 次充放电循环后放电比容量为 132.4 mAh g -1,容量保持率为 80.6 %。关键词:LiNi 0.5 Co 0.2 Mn 0.3 ;回收利用;溶剂溶解法;电极废料;超声波 1. 引言
液相色谱 - 质谱(LC-MS)在当今设备齐全的分析实验室中迅速成为常规的效果。随着LC-MS的使用增加,具有工具性,化学和数据库方法,旨在提高这种宝贵技术的敏感性,特定性和分析速度。具有增强离子光学和检测器的新离子源,高分辨率LC系统和快速质谱仪已降低了检测的限制,但已提高了用于样品制备,移动相和添加剂的试剂的纯度期望,并提高了标准。一些显着的例子,说明如何影响分析的LC-MS中使用的化学物质的纯度和组成:
无机纳米粒子胶体合成中遇到的难点问题。25 – 28 该方法的一个重要优点是不需要高沸点有机溶剂,从而大大降低了纳米粒子的生产成本。图 1 显示了通过无溶剂热分解金属羧酸盐获得可分散金属氧化物纳米粒子的一般合成路线。金属羧酸盐(金属皂)用作分子前体,在低压密闭容器中进行热解反应,以产生溶剂可分散的金属氧化物纳米粒子。该方法通常依赖于两个重要参数:(i)选择或制备合适的金属羧酸盐前体,这些前体可以在相对较低的温度下容易分解。在使用金属盐和脂肪酸的物理混合物的情况下,必须去除所产生的不溶性盐。传统胶体热分解工艺中使用的大多数金属皂或金属盐与脂肪酸的组合也可以方便地适用于此工艺。17,29
摘要:高通量药物发现高度依赖于可用的靶标,以加速候选药物的筛选过程。传统的化学蛋白质组学方法用于筛选药物靶标,通常需要固定/修饰药物分子以拉下相互作用的蛋白质。最近,基于能量学的蛋白质组学方法提供了一种研究药物 - 蛋白质相互作用的替代方法,即直接使用复杂的细胞裂解物,而无需对药物进行任何修饰。在本研究中,我们开发了一种新的基于能量学的蛋白质组学策略,即溶剂诱导蛋白质沉淀 (SIP) 方法,通过使用定量蛋白质组学来分析药物与其靶蛋白的相互作用。该方法适用于任何使用丙酮、乙醇和乙酸等常见化学试剂的实验室。SIP 方法能够识别细胞裂解物中众所周知的甲氨蝶呤、SNS-032 和星形孢菌素的泛激酶抑制剂的蛋白质靶标。我们进一步应用此方法发现格尔德霉素的靶标。成功鉴定了 HSP90 家族的三个已知蛋白质靶标,并首次鉴定了包括 NADH 脱氢酶亚基 NDUFV1 和 NDUFAB1 在内的几个潜在靶标,并使用蛋白质印迹法验证了 NDUFV1。此外,此方法能够评估药物 - 靶标相互作用的亲和力。这些数据共同证明我们的方法为药物靶标发现提供了一个强大的平台。