Loading...
机构名称:
¥ 1.0

锂离子电池对社会产生了巨大影响,最近获得了诺贝尔化学奖 1、2。经过几十年的商业化,锂离子电池正迅速接近其能量密度的理论极限,从而推动了锂金属化学的复兴 3-6。然而,锂金属电池的推广应用受到其循环寿命较短的困扰 4、5。锂金属和电解质之间无法控制的副反应形成化学不稳定、机械易碎的固体电解质界面相 (SEI)。SEI 在循环过程中容易破裂,导致树枝状生长、“死锂”形成和不可逆的锂库存损失 4。电解质工程可以调整 SEI 结构和化学性质,使其成为实现锂金属负极的关键且实用的方法 7、8。对于一种有前景的电解质,必须同时满足几个关键要求 9 – 11 :(1)始终如一的高库仑效率(CE)以最大限度地减少锂的损失,包括在初始循环中,(2)在贫电解质和有限过量锂条件下的功能性以实现最大比能量,(3)对高压正极的氧化稳定性,(4)合理的低盐浓度以实现成本效益和(5)高沸点和不可燃性以确保安全性和可加工性。电解质工程方面的最新研究提高了锂金属电池的循环性,包括盐添加剂优化 12 、溶剂比例修改 13 、 14 和液化气电解质 15 。特别是,高浓度电解质 16、17 和局部高浓度电解质 11、18 – 22 被认为是最有效的方法。高浓度电解质成功减少了 Li + 溶剂化结构中的游离溶剂分子,从而形成了以无机为主的 SEI 和更好的锂循环性能。整个系列

电解质溶剂的分子设计可实现能量...

电解质溶剂的分子设计可实现能量...PDF文件第1页

电解质溶剂的分子设计可实现能量...PDF文件第2页

电解质溶剂的分子设计可实现能量...PDF文件第3页

电解质溶剂的分子设计可实现能量...PDF文件第4页

电解质溶剂的分子设计可实现能量...PDF文件第5页

相关文件推荐

2022 年
¥5.0