为解决类风湿性关节炎、1 型糖尿病和格雷夫斯病的药物耐药性问题,选取 32 种化合物作为自身免疫性疾病的新型抑制剂,进行 2D-QSAR、3D-QSAR、对接、ADMET 和分子动力学 (MD) 模拟实验。2D-QSAR 研究采用遗传近似-多元线性回归 (GA-MLR)。实验活性与模型 1 获得的活性显示出良好的相关性 (r2 = 0.7616 和 q2 = 0.6327)。使用 3D-QSAR 技术对构效关系 (SAR) 进行了统计研究,对于一个高预测模型——比较分子场分析 (CoMFA:Q2=0.785;R2=0.936;rext2= 0.818),该技术产生了很强的统计意义。根据对预测模型轮廓图的全面检查,立体场和静电场控制着生物活性。这些信息对于理解创造新的、强大的自身免疫性疾病抑制剂所必须具备的品质非常有用。通过这些发现,设计了 70 种具有改进的受体靶向活性的新抑制剂。最后的先导化合物是化合物 32 和设计化合物 D40,它们是通过虚拟筛选和随后的分子对接发现的。根据对每个蛋白质-配体复合物的 MD 模拟结果,化合物 32 和 D40 能够靶向蛋白质,例如精氨酸脱亚胺酶 4 (PAD4)、主要组织相容性复合体 (MHC) II 类 HLA-DQ-ALPHA 链和促甲状腺激素受体 (或 TSH 受体) 蛋白。我们的研究表明,化合物 32 和设计化合物 D40 可以在体外和体内针对某些选定的自身免疫性疾病进行研究。还测量了选定药物的 MM/GBSA 结合自由能。用于模式识别、结构相似性和热点结合能预测。
主要关键词