摘要:在现实生活中,由于各种测量局限性,登革热流行模型中的所有变量都可以测量。因此,需要一个工具来估计具有已知相关变量的未测量变量。估计非线性系统中变量的一种方法是扩展的卡尔曼滤波器(EKF)。接下来,使用这些估计的结果,将以疫苗接种的形式寻求最佳控制,以减少感染的数量。从仿真结果中可以得出结论,登革热模型的EKF状态估计足以估计在所选的干扰协方差范围内被随机变量干扰的状态。然后,发现干扰的标准偏差越小,开始时所需的最佳控制越小。因此,破坏越大,所花费的成本越大。
摘要:可调的光学微环形滤波器在光学通信,微波光子学和光子神经网络中起着重要作用。典型的微环滤波器基于微秒时间尺度的热光(TO)效应或具有有限的调谐范围的电用量(EO)效应。Here, we report a continuously tunable lithium niobate on insulator (LNOI) Vernier cascaded micro-ring filter with wire-bonded packaging integrated with both TO and EO tuning electrodes, featuring a 40-nm free spectral range (FSR), 2.3 GHz EO bandwidth, and a high sidelobe suppression ratio of 21.7 dB, simultaneously.我们的高性能光学微型环滤波器可能会成为未来LNOI光子电路的重要元素,并在高容量波长分段多发性多路复用(WDM)系统,宽带微波光子学,快速启用的外部外部腔激光器和高速光谱神经网络中应用。
Gabor 滤波器、GLCM 和 DWT 在脑肿瘤分类中的表现评估 Fausat Fadeke Agboola 1;Wasiu Oladimeji Ismaila 2;Oluyinka Iyabo Omotosho 2;Adeleye Samuel Falohun 3;和 Folasade Muibat Ismaila 4 1 尼日利亚阿达马瓦州约拉莫迪博阿达玛大学物理科学学院计算机科学系。 2 尼日利亚奥约州奥格博莫索拉多克阿金托拉理工大学计算机与信息学学院计算机科学系。 3 尼日利亚奥约州奥格博莫索拉多克阿金托拉理工大学工程与技术学院计算机工程系。 4 尼日利亚奥顺州理工学院计算机科学系。摘要 大脑对身体功能至关重要,如果不加以治疗,肿瘤可能会侵袭大脑,导致死亡、不受控制的生长和转移。因此,自动分类脑肿瘤类型对于加快治疗、制定更好的计划和提高患者生存率至关重要,因为人工诊断脑肿瘤类型在很大程度上依赖于放射科医生的专业知识和敏感性。因此,本文使用 Kaggle 数据库中的四类脑 MRI 肿瘤,评估了 Gabor 滤波器、灰度共生矩阵 (GLCM) 和离散小波变换 (DWT) 在识别正常和异常脑肿瘤方面的性能。性能分析侧重于二元分类,以确定每种特征提取方法的功效。研究发现,Gabor 特征的假阳性率 (FPR) 为 7.61%,假阴性率 (FNR) 为 8.57%,灵敏度为 91.43%,精确度为 81.36%,准确度为 92.13%,时间为 985.34 秒。 GLCM 特征的 FPR 为 9.69%,FNR 为 9.52%,灵敏度为 90.48%,精度为 77.24%,准确率为 90.36%,时间为 364.74 秒。DWT 特征的 FPR 为 11.42%,FNR 为 11.43%,灵敏度为 88.57%,精度为 73.81%,准确率为 88.58%,时间为 275.53 秒。GLCM 产生了最有效的特征提取器,它可以作为一种有用的技术,并作为放射科医生诊断脑肿瘤的第二读取器,以降低死亡率。关键词:Gabor 滤波器、GLCM、DWT、MRI 图像、脑肿瘤、分类。引言脑肿瘤是一种起源于脑内的疾病,当不规则细胞不受控制和限制地生长时,就会无视正常的细胞生长规律。
提出了一种基于混合耦合技术的具有宽带外抑制的紧凑型双频带带通滤波器 (BPF)。该 BPF 由两个混合螺旋耦合谐振器组成,其中谐振器之间的电耦合和磁耦合可以为双频带产生两个传输路径。这种双频带 BPF 具有宽带外抑制。此外,它的通带频率和带宽可以轻松控制。为了说明其工作原理,给出了一个具有偶模和奇模分析的等效电路。这种双频带 BPF 采用硅集成无源器件 (IPD) 技术制作。制作的双频带 BPF 具有 1.6 mm × 0.54 mm × 0.23 mm 的紧凑尺寸,并进行了测量。测量结果表明,这种双频带 BPF 可以产生 2.45 GHz 和 6.15 GHz 的两个频带。此外,在 7.8 至 20 GHz(8.16 f 0)范围内可实现超过 20 dB 的抑制。模拟结果和测量结果具有很好的一致性。
摘要:本文介绍了一种双二阶频率滤波器电路。电压模式下具有五种功能的标准频率滤波器。使用VDCC器件,电压为±5VDC,具有并联无源RLC配置的多输入、单输出形式。并且使用2个电容器和2个电阻器,它可以在不改变结构的情况下过滤五个标准频率函数:AP,BP,HP,LP和BR。它具有电路结构简单的突出特点。可以通过调节偏置电流来调整品质因数,通过调节电容器来控制固有频率。发现电路的综合与理论一致。通过使用PSPICE程序模拟结果来验证结果。关键词——双二阶滤波器,VDCC,电子可控,ABB,MISO。
摘要 — 本文介绍了一种基于扰动双模基片集成波导 (SIW) 腔的紧凑型新型宽阻带带通滤波器 (BPF)。在 SIW 腔体中心引入扰动金属通孔,通过将 TE 101 模式的谐振频率移向 TE 201 模式来实现双模 SIW 腔体。此外,通过将外部端口设置为高阶杂散模式的电场零点位置,可以实现宽阻带 BPF。通过抑制至少包含七种模式的不需要的模式,可以在单个 SIW 腔体中获得最宽的阻带,最宽的阻带可达 2 f 0。为了验证所提出的宽阻带滤波器,设计、制造并测量了两个原型,阻带为 2 f 0,抑制水平分别优于 20dB 和 30dB。
期待,我们建议对高级传感器技术和融合算法进行进一步研究,以增强自动驾驶汽车的感知能力。此外,人工智能和机器学习技术的集成可以基于融合的传感器数据来实现更智能的决策过程。用于评估传感器融合算法的标准化协议和基准对于确保不同自主驾驶平台之间的互操作性和可靠性至关重要,这需要研究人员,行业利益相关者和监管机构之间的协作努力。总而言之,我们的研究通过利用传感器融合技术与卡尔曼过滤方法结合使用传感器融合技术来为更安全,更高效,更可靠的自主运输系统奠定基础。
摘要 - 在本文中,我们强烈提倡正方形 - 根协方差(而不是信息)对视觉惯性导航系统(VIN)的过滤,尤其是在资源约束的边缘设备上,因为其效率较高和数值稳定性。尽管VIN近年来取得了巨大进展,但在施加有限的单词长度时,它们仍然在嵌入式系统上面临资源的严格性和数值不稳定。为了克服这些挑战,我们开发了一种超快速和数值稳定的平方根滤波器(SRF) - 基于VINS算法(即SR-VINS)。所提出的SR-VIN的数值稳定性是从采用方形协方差继承而来的,而非新颖的SRF更新方法基于我们新的Permisted-QR(P-QR)的新型SRF更新方法可以极大地实现,该方法完全利用,该方法完全利用并适当地维持了平方英尺的上层三角形结构。此外,我们选择了状态变量的特殊订购,该变量适用于SRF传播中的(p-)QR操作,并更新并防止不必要的计算。通过数值研究对拟议的SR-VIN进行了广泛的验证,表明当最先进的(SOTA)过滤器存在数值困难时,我们的SR-VINS具有较高的数值稳定性,并且非常明显地,在32位单一的速度上,以速度快速旋转,可以像Sota一样快速地浮动32位单一的浮动效果。我们还进行了全面的现实实验,以验证所提出的SR-VIN的效率,准确性和鲁棒性。
2有效的SQAURE-ROOT滤波2 2.1置换-QR分解。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。3 2.2传播。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。4 2.2.1 Kalman滤波器。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 4 2.2.2平方根滤波器。 。 。 。4 2.2.1 Kalman滤波器。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。4 2.2.2平方根滤波器。。。。。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>4 2.2.3证明。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>4 2.3州扩展和克隆。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>5 2.3.1 Kalman滤波器。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div>5 2.3.1 Kalman滤波器。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>5 2.3.2平方根滤波器。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>5 2。2.3.3证明。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>5 2.4更新。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>6 2.4.1 Kalman滤波器。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 6 2.4.2平方根滤波器。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 6 2.4.3证明。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div>6 2.4.1 Kalman滤波器。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>6 2.4.2平方根滤波器。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 6 2.4.3证明。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div>6 2.4.2平方根滤波器。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>6 2.4.3证明。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。。。。。。。。。。。7 2.5状态边缘化。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。8 2.5.1 Kalman滤波器。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。8 2.5.2平方根滤波器。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。8 2.5.3证明。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>9 div>
减轻运输部门的污染需要部署零排放解决方案,例如电动汽车(EV)。电动汽车的一个重大挑战是电池的寿命有限,一个钥匙和昂贵的组件。为了避免此问题,潜在的解决方案在于电池与超级电容器的整合以创建混合储能系统(HESS)。这种组合显然可以降低电池的峰值电流,从而延长其寿命,并最终导致电动汽车的长期成本效益。HESS的关键组成部分是能源管理策略(EMS),其任务是优化能量分布。低通滤波器(LPF)用作简单的实时EMS。当前的研究介绍了一种新的方法,用于确定LPF的最佳截止频率,该方法用微调(RPFT)称为Ragone图。Ragone图为电池和驱动周期提供了一般的截止频率,同时采用微调来优化它。仿真结果表明,RPFT方法的表现优于快速傅立叶变换(FFT)方法,从而证明了其功效。RPFT的应用导致电池峰值电流和电池电流均方根(BCRMS)的降低分别减少了29.80%和9.99%。本研究提供了改善电动汽车能源管理的宝贵见解,并强调了RPFT方法在延长电池寿命并提高电动汽车的成本效益方面的潜力。