作者:K Carscadden · 2022 · 被引用 6 次 — ... 军事小道,多伦多,安大略省,M1C 1A4 加拿大。摘要 了解新特征的起源和影响一直是许多领域的长期关注点...
量子场是物理世界的基本组成部分,它描述所有能量尺度上的物质量子多体系统以及电磁辐射和引力辐射。量子场工程实现了前所未有的测量灵敏度,典型案例是利用压缩光将激光干涉引力波天文台 (LIGO) 的本底噪声降低到散粒噪声极限以下 [1]。在连续变量 (CV) 量子场(又称量子模(代替离散变量 (DV) 量子位))中对量子信息进行编码,已经实现了数百万个量子模上的多体纠缠。这种规模在任何量子位架构中都是无与伦比的,它为量子计算、量子通信和量子传感定义了新的视野和范式。基于量子模式的纳米光子集成设备有可能超越基于量子比特的噪声中型量子 (NISQ) [ 2 ] 计算设备的性能,从而定义未来的量子技术。量子模式的自然实现是使用量子光,这也适用于传感 [ 3 – 6 ] 和通信。
摘要:本研究旨在通过理论和实验研究来扩展对 3.2 mm 厚 Ti-6Al-4V 合金多层壁直接激光沉积 (DLD) 过程中应力场演变的理解水平。工艺条件接近于通过 DLD 方法生产大尺寸结构的条件,因此样品具有相同的热历史。开发了一种基于隐式有限元法的模拟程序,用于应力场演变的理论研究。通过使用实验获得的 DLD 处理的 Ti-6Al-4V 合金的温度相关力学性能,模拟的准确性显著提高。通过中子衍射实验测量了堆积中的残余应力场。使用平面应力方法和力-动量平衡确定了对测量应力具有决定性的无应力晶格参数。分析讨论了残余应力场不均匀性对实验测量精度和模拟过程有效性的影响。基于数值结果发现,全厚度应力分布的不均匀性在中心横截面达到最大值,而在堆积端部,应力分布几乎均匀。靠近基体的堆积端部主应力分量为拉应力。此外,计算出的等效塑性应变在堆积端部附近达到5.9%,此处沉积层已完成,而塑性应变实际上等于实验测量的DLD加工合金的延展性,即6.2%。通过力-动量平衡和平面应力方法获得的实验测得的残余应力略有不同。
b'其次,我们定义一个模拟元素池 P ( \xcb\x9c A, N MO ),其中包含所有独特的单量子比特和双量子比特激发演化,分别为 180 \xcb\x9c A ik ( \xce\xb8 ) 和 \xcb\x9c A ijkl ( \xce\xb8 ),其中 i、j、k、l \xe2\x88\x88{ 0 , N MO \xe2\x88\x92 1 } 。该池的大小为 || P ( \xcb\x9c A, N MO ) || = N MO 2 +3 N MO 4 。181'
肝细胞癌(HCC)是第六个最常见的原发性癌症,长期生存不足。PIK3CA功能突变的增益发生在人类HCC的子集中。Alpelisib是一种选择性PIK3CA抑制剂,已获得FDA批准治疗PIK3CA突变乳腺癌。在本手稿中,我们评估了单独或联合使用Alpelisib的治疗性效果,用于治疗HCC。我们通过流体动力注射C-MET/PIK3CA(H1047R)(C-MET/H1047R),C-MET/PIK3CA(E545K)(C-MET/E545K)和C-MET/SGPTEN GENE GENE组合测试了小鼠HCC中的Alpelisib。alpelisib减慢了C-MET/H1047R和C-MET/E545K HCC的生长,但在C-MET/SGPTEN HCC中无效。从机械上讲,Alpelisib在C-MET/H1047R和C-MET/E545K HCC进展中抑制P-ERK和P-AKT,但不影响与细胞增殖有关的MTOR途径或基因。在用PIK3CA(H1047R)转染的人类HCC细胞系中,Alpelisib与MTOR抑制剂MLN0128或CDK4/6抑制剂palbociclib抑制HCC细胞生长。在C-MET/H1047R小鼠中,Alpelisib/MLN0128或Alpelisib/palbociclib组合疗法导致肿瘤退化。我们的研究表明,Alpelisib可以通过抑制MAPK和AKT Cascades来治疗PIK3CA突变的HCC。此外,将Alpelisib与MTOR或CDK4/6抑制剂相结合,具有针对PIK3CA渗透的HCC的协同效率,为针对HCC的精确医学提供了新的机会。
计算汉密尔顿量的能谱是量子力学中的一个重要问题。量子计算机的最新发展使人们认识到它们是解决这一问题的有力工具。量子相位估计 (QPE) 算法是确定汉密尔顿量特征值的算法之一 [1, 2, 3, 4, 5, 6]。该算法最初由 Kitaev、Lloyd 和 Abrams [1, 2, 3] 提出。该算法基于寻找特征值 λ = e iφ 或幺正算子的相位 φ。当幺正算子是量子系统演化的算子时,相位 φ 与汉密尔顿量的特征值相关。关于这个问题的简短综述可以在 [7] 中找到。在 [8] 中,提出了一种基于稳健相位估计算法估计跃迁能量的方法。此外,还已知可以检查能级的混合经典量子算法。其中包括量子近似优化算法(它识别出基态能量并用于解决优化问题 [9, 10, 11, 12]),变分量子特征值求解器(它识别出获得跃迁能量 [13, 14, 15, 16])。在 [17] 中,作者提出了一种有效的方法,用于根据演化算子期望值的时间依赖性来估计汉密尔顿函数的特征值。最初这个想法是在 [18] 中提出的。在 [19] 中,变分量子特征值求解器采用了量子比特有效的电路架构,并介绍了在量子计算机上研究量子多体系统基态特性的量子比特有效方案。在 [20] 中,描述了量子算法(量子 Lanczos,最小纠缠典型热态的量子类似物,最小纠缠典型热态的量子类似物),这些算法使得在量子计算机上检测基态、激发态和热态成为可能。在本文中,我们表明,研究物理量平均值的时间依赖性可以提取量子系统的跃迁能量。在物理量的算符与
人们正在考虑将地下多孔含水层用作可再生能源压缩能量储存的储层。在这些系统中,在产量超过需求时注入气体,在需求高峰或产量不足时提取气体用于发电。目前运营的地下能源设施使用盐穴进行储存,使用空气作为工作气体。二氧化碳可能是更受欢迎的工作气体选择,因为在储存条件下,二氧化碳具有高压缩性,可以提高运营效率。然而,二氧化碳和盐水在储存区边界的相互作用会产生化学活性流体,从而导致矿物溶解和沉淀反应,并改变储存区的性质。本研究旨在了解在注入、储存和提取流动周期中使用二氧化碳作为工作气体的地球化学影响。这里,根据 Pittsfield 现场测试的时间表,基于 7 小时注入、11 小时提取和 6 小时储层关闭开发了反应性传输模拟,以评估储层的地球化学演化,运行寿命为 15 年。将存储系统中的演化与 12 小时注入和提取的连续循环系统进行比较。运行时间表研究的结果表明,矿物反应发生在域的入口处。此外,在两个系统中,在 CO 2 酸化盐水循环过程中,内部域的孔隙度得以保留。
摘要。当今的量子计算机提供了对高能物理激发的量子场论散射过程进行实时计算的可能性。为了遵循已建立的在欧几里得时间计算静态属性的成功路线图,开发新的算法来处理当前嘈杂的中尺度量子 (NISQ) 设备的局限性并建立使用不同设备取得的进展的定量指标至关重要。在本文中,我们报告了这些方向的最新进展。我们表明,Trotter 误差的非线性方面使我们能够采取比低阶分析建议的更大的步骤。这对于使用当今的 NISQ 技术达到物理相关的时间尺度至关重要。我们建议使用一个指数来平均准确计算的 Trotter 站点占用演化与 NISQ 机器上的实际测量值之间的差异的绝对值 (G 指数) 作为衡量标准,以比较从不同硬件平台获得的结果。我们使用具有四个站点的一维空间横向 Ising 模型,将此度量应用于多个硬件平台。我们研究了包括读出缓解和 Richardson 外推在内的结果,并表明基于对 Trotter 步长修改的分析,缓解测量非常有效。我们讨论了 Trotter 步长程序中的这一进步如何改善量子计算物理散射结果,以及如何将这一技术进步应用于其他机器和噪声缓解方法。
我们引入了一种新颖的混合算法,使用参数化量子电路模拟量子系统的实时演化。该方法名为“投影变分量子动力学”(p-VQD),实现了将精确时间演化迭代、全局投影到参数化流形上。在小时间步长极限下,这相当于 McLachlan 的变分原理。我们的方法之所以有效,是因为它表现出与变分参数总数的最佳线性缩放。此外,它是全局的,因为它使用变分原理一次优化所有参数。我们方法的全局性大大扩展了现有高效变分方法的范围,而这些方法通常依赖于对变分参数的受限子集进行迭代优化。通过数值实验,我们还表明,我们的方法比现有的基于时间相关变分原理的全局优化算法特别有利,由于参数数的二次缩放要求高,不适合大型参数化量子电路。