激光吸收是激光材料加工的基本作用之一。吸收值与计算过程效率相关,并预测对日益使用的激光剂的材料对材料的影响。但是,吸收测量可能是一项复杂的任务。在金属的高温下,由于动态表面和温度测量所需的通常未知的发射率,仅可用有限的实验数据。模型是为了预测不同温度下的吸收,这些温度在某些制度中取得了成功,但通常在其他方面失败。为了改善理论模型,需要对高温金属表面进行实验测量。因此,在这项工作中,使用加热激光器提出了一种辐射测量方法,以创建金属熔体池,同时通过第二个测量激光束测量温度和表面反射。从文献中知道的一般趋势可以通过测量值确认,而吸收值倾向于在升高温度下散射。但是,可以观察到趋势。在熔化和沸腾温度之间,在35%至38%的范围内看到了略有吸收的增加。这些值表明必须考虑频带间和内标的吸收来解释该制度中的吸收。在升高的温度下,内预预知是主要的吸收机制,在非常高的温度下达到超过45%的吸收值。
如今,掺杂稀土离子的石英光纤激光器,尤其是 Y b 3+ 光纤激光器,其平均功率已达到数千瓦量级,许多技术应用已开始显现可行性。例如:医疗手术、岩石钻探、远程云感测、射电天文学、太空无线电通信、卫星通信、无线电传输、远程激光通信以及用于远程充电电池的激光器。因此,其中一些应用需要研究与激光束大气传播相关的现象 [1]、[2]、[3] 和 [4]。最近,一些研究开始对速度场作为动态变量的数值解进行建模 [5],这与先前研究规定流体速度 [6]、[7] 不同。当激光束传播通过吸收介质时,会发生称为热晕的效应。尽管介质的吸收效应非常小,但当流体为空气时,会促进激光束附近的温度和密度场的变化。温度变化会引起折射率的变化,从而
重量。百分比(%)C Cr Mn Mo N Ni OPS Si Fe 316L 0.01 16.24 1.09 2.42 0.05 12.37 0.04 0.04 0.01 0.50 平衡。 431 0.17 16.5 0.1 - - 1.97 - 0.01 0.01 0.7 平衡。 A-36 0.12 0.05 0.78 0.01-0.06-0.02 0.012 0.11 平衡。十三
{ Times New Roman,11 分 } 激光折弯是通过激光束照射板材表面来弯曲板材的工艺 [1]。这是一种热机械工艺,适用于快速成型和变形低延展性材料。该工艺在航空航天、造船、微电子、汽车工业等领域具有多种潜在应用。它是一种快速、灵活且低成本的金属成型工艺,可以提高这些行业的竞争力。该工艺还提供了很大的灵活性,因为许多其他应用(如焊接、钎焊和硬化)可以通过同一设备执行。该领域已经发表了多篇理论和实验论文,其中更多的研究集中在激光束直线弯曲上。这些工作的最终目标是了解该过程的物理原理并建立各种预测弯曲角度的模型。本文简要回顾了这些工作以及用于分析的不同方法。基于此,本文利用 ABAQUS 程序包进行有限元分析,预测特定钢板材料的温度分布和弯曲角度,并将结果与作者开发的简单分析模型进行比较。从文献中的实验结果可以确定,所提出的理论模型可以相当好地预测弯曲角度。还表明,所开发的模型可用于快速估算激光弯曲过程中材料的屈服应力。
1 加拉茨大学工程学院机械工程系,Domneasc ă 47, 800008 Galati,罗马尼亚 2 先进车辆系统中心(CAVS),密西西比州立大学,斯塔克维尔,MS 39762,美国;bagheri.274@gmail.com 3 微机电系统中心(CMEMS-UMinho),Campus de Azur é m,米尼奥大学,4800-058 Guimarães,葡萄牙;brunohenriques@dem.uminho.pt 4 陶瓷和复合材料实验室(CERMAT),Campus Trindade,圣卡塔琳娜联邦大学(UFSC),Florian ó polis 88040-900,SC,巴西 5 德累斯顿工业大学制造技术研究所,01062 Dresden,德国; andres_fabian.lasagni@tu-dresden.de 6 弗劳恩霍夫制造研究所和 Strahltechnik IWS,Winterbergstr。 28, 01277 Dresden, 德国 7 奥本大学机械工程系, Auburn, AL 36849, USA; shamsaei@auburn.edu 8 国家增材制造卓越中心 (NCAME),奥本大学,奥本,AL 36849,美国 *通讯作者:mihaela.buciumeanu@ugal.ro (MB); fsamuel@dem.uminho.pt (FSS)
抽象的激光覆层是一项公认的技术,大多数先前的数值建模工作都集中在基于粉末过程的过程中的交付和融化池行为。这项研究对优化的激光束成型进行了新的研究,以针对电线基的独特特性,其中直接底物加热以及电线和底物之间的热传递非常重要。与基于粉末的材料交付相比,该主题的值是通过基于电线的沉积过程来改善的沉积速率和致密的金属结构。线内温度分布(AISI 316不锈钢),底物的传热和直接加热(低碳钢)是通过传热模拟建模的,具有三个激光束辐照度分布。此分析确定了通常与标准高斯分布相关的局部高温区域的去除,以及均匀方形梁曲线可以提供的改进的底物加热。使用横截面光学显微镜分析了使用预位线和1.2 kW CO 2激光器的实验,以提供模型验证和改进的电线覆盖层润湿的证据,同时维持甲壳材料中有良好的抗甲基甲虫。这项工作的关键发现是从480 W/mm 2减少,在从高斯分布更改为均匀的平方分布时,需要辐照辐射,以进行有效的熔融池形成。这也可减少总能量50%。认可和讨论了能源效率,降低成本和可持续性改善的潜在提高。
•转向镜和检测器之间的光距离:对于较大距离的精度较高。因此,应选择较大的距离。第一个转向镜应靠近波动源。•光束直径:具有相同的激光束位置的绝对变化,较小的直径会导致4 QD象限的功率差异更强,因此会导致更陡峭的控制信号。这就是为什么直径较小的激光束可以以较高的精度定位。•强度:检测器的分辨率进一步取决于击中敏感区域的强度。这可以通过适当的光学过滤器选择和电子方式进行优化(另请参见第5.5节)来改变。•重复率和脉冲持续时间:可以针对不同的激光参数优化控制器带宽。较高的带宽导致更快的反应,因此在快速波动的情况下,精度更高。
摘要。1)背景:高功率连续激光束在光缆(包括光纤)列车和大气中的建模、特性、变换和传播在过去几年中已成为激光科学与工程领域的热门话题。在军事领域中,高功率连续激光应用必须具有单模输出。此外,非平稳、动态的工作模式也很常见。由于动态行为和非典型非高斯分布,公认的激光束诊断设备和程序无法直接应用。2)方法:提出了 Wigner 变换方法来表征具有显著确定性像差的动态变化高功率连续激光束。采用 Shack-Hartmann 方法进行波前传感测量并分解为正交 Zernike 基。3)结果:发现了由非平稳热光效应导致的确定性像差,该像差取决于激光输出的平均功率。通过维格纳方法测定的光束质量的变化与远场光束直径的测量结果的变化相同。4)结论:这种像差成分似乎是导致高功率连续激光束的光束质量和亮度下降的主要因素。
[1] M. Lassen, V. Delaubert, J. Janousek, K. Wagner, H.-A. Bachor、PK Lam、N. Treps、P. Buchhave、C. Fabre、CC Harb、Phys.冻结。莱特。 98,083602 (2007)