µs UV-LA 优势: 单步激活深 p/n 结,载流子分布与植入后 SIMS 分布相匹配 适用于最大 5 µm 的各种分布。 浅层紫外线吸收 与薄晶圆兼容
4.3.2 重叠................................................................................................ 30
1. 简介 激光加工是一种改进所选材料性能和服务特性的先进工艺。激光在材料加工中的可行性和优势取决于它能够以非接触方式向产品表面提供严格剂量和高强度的能量。激光技术可用于加工物体的远程区域和局部区域,且不会对材料产生振动和其他负面影响。这些和其他显著优势为激光加工在当前和未来具有更大的应用潜力。由于其聚焦激光辐射的能量输入极其局部集中,激光材料加工可为加工部件提供比任何其他热源更高的能量密度。因此,激光材料处理不仅可用于激光焊接或切割,还可用于改变材料的物理和机械性能。各种论文和专著 [1-3] 介绍了激光加工物理特性领域的当前成就。许多参考书 [4-6] 详细描述了激光设备在不同生产技术中的应用。研究表明,金属材料的重要特性,如抗拉强度、疲劳强度和耐磨性,都是结构敏感的,也就是说,可以通过激光加工适当改变材料结构来控制。只有少数研究通过控制材料结构的变化来软化材料 [7-10]。即使是“激光退火”这个术语,在文献中,从更广义上讲,是指通过不同持续时间的激光辐射改变固体的结构,通常是指通过纳秒持续时间的激光辐射对半导体结构进行脉冲定向结晶。
随着超导量子处理器的复杂性不断增加,需要克服频率拥挤限制的技术。最近开发的激光退火方法提供了一种有效的后制造方法来调整超导量子比特的频率。在这里,我们展示了一种基于传统显微镜组件的自动激光退火装置,并展示了高度相干的透射的保存。在一个案例中,我们观察到激光退火后相干性增加了两倍,并对这个量子比特进行噪声光谱分析,以研究缺陷特征的变化,特别是两级系统缺陷。最后,我们提出了一个局部加热模型,并展示了晶圆级激光退火的老化稳定性。我们的工作是理解潜在物理机制和扩大超导量子比特激光退火规模的重要第一步。
光学主动电信发射器的最新演示表明,硅是固态量子光子平台的引人注目的候选者。尤其是,在常规的热退火后,已在富含碳的硅中显示了称为G中心的缺陷的制造。然而,这些发射器在晶圆尺度上的高收益受控制造仍然需要鉴定合适的热力学途径,从而在离子植入后激活其激活。在这里,我们证明了纳秒脉冲激光退火时高纯硅底物中G中心的激活。该提出的方法通过供应短的非平稳脉冲来实现G中心的非侵入性,局部激活,从而克服了与发射器的结构性亚元能力相关的常规快速热退火的局限性。有限元的分析突出了该技术的强大非平稳性,提供了与常规更长的热处理相对于常规的较长热处理的根本不同的缺陷工程能力,为嵌入在集成光子电路和波导的集成光子电路和波导中的发射器的直接和受控制造铺平了道路。
摘要 - 在维持高质量量子门的同时缩小量子数的数量仍然是量子计算的关键挑战。目前,积极可用以> 50 Qubits的超导量子处理器。对于此类系统,固定频率传输由于其长度连贯性和噪声免疫而具有吸引力。但是,由于精确的相对频率要求,缩放固定的频率档案证明了具有挑战性。在这里,我们采用激光退火来选择性地将Transmon Qubits调整为所需的频率模式。数百个退火量子的统计数据表明,经验调整精度为18.5 MHz,没有对量子相干性的可测量影响。我们在调谐的65克处理器上量化了门错误统计,中位两分之一的门限制为98.7%。基线调整统计量产生的频率等效性精度为4.7 MHz,高收益缩放量超过10 3个Qubit水平。向前迈进,我们预计选择性激光退火将在扩展固定频率体系结构中发挥核心作用。
摘要 — 当前的半导体器件制造通常需要集成热预算较低的退火工艺步骤;其中,脉冲激光退火 (LA) 是一种可靠的选择。因此,使用 LA 专用技术计算机辅助设计 (TCAD) 模型正在成为开发这种特殊加热方法的支持。无论如何,已经在学术或商业软件包中实现的模型通常会考虑一些近似值,如果将它们应用于相当常见的纳米器件配置,可能会导致不准确的预测:即具有纳米宽元素的结构,其中也存在非晶态口袋。特别是,在这些情况下,可能会发生非扩散热传输和爆炸性结晶。在这里,我们介绍了 LA TCAD 模型的升级,允许模拟这些现象。我们将证明这些模型可以可靠地集成到当前的 TCAD 软件包中,并讨论某些特定情况下数值解特征的主要特征。
Sige合金数十年来引起了很多兴趣,尤其是在微电子行业中。如今,它们已在许多设备中使用。的确,由于GE [1]中的较高的孔迁移率和相对较小的晶格参数差异,因此它们与硅设备的兼容性使得能够设计出诸如应变,载流子迁移率和带盖之类的特性。一个人可以使用sige:b源和排水量来压缩PMOS通道,从而改善其电气性能[2]。但是,设备的连续微型化需要形成越来越浅的源/排水(S/d)连接,但具有高掺杂剂激活。因此,退火过程时间尺度变短且较短[3,4]。纳秒激光退火(NLA)可以达到SI [5-7]或GE [8,9]中的较高掺杂剂的激活。紫外线NLA(UV-NLA)也可以用于3D整合,因为其短脉冲持续时间及其短波长导致表面附近的高退化温度,同时将嵌入式层保持在较低的温度下[10-13]。
紫外纳秒激光退火 (LA) 是一种强大的工具,需要严格限制的加热和熔化。在半导体技术中,随着所提出的集成方案的复杂性不断增加,LA 的重要性也随之增加。优化 LA 工艺以及实验设计具有挑战性,尤其是当涉及具有各种形状和相的复杂 3D 纳米结构系统时。在这种情况下,需要对激光熔化进行可靠的模拟,以优化工艺参数并减少实验测试次数。这产生了虚拟实验设计 (DoE)。𝑆𝑖 1− 𝑥 𝐺𝑒 𝑥 合金如今因其与硅器件的兼容性而被使用,从而能够设计应变、载流子迁移率和带隙等特性。在这项工作中,用有限元法/相场方法模拟了松弛和应变𝑆𝑖 1− 𝑥 𝐺𝑒 𝑥 的激光熔化过程。具体来说,我们使用实验数据校准了合金结晶相和液相的介电函数。我们强调了重现不同聚集状态下空气与材料界面的精确反射率的重要性,以正确模拟该过程。我们间接发现了熔体硅锗光学行为的有趣特征。