摘要 - 准确的定位在自主机器人系统的有效运行中起着至关重要的作用,尤其是在诸如施工站点之类的染色体环境中。同时使用LIDAR传感器同时定位和映射(SLAM)已成为一种流行的解决方案,因为它在没有外部基础架构的情况下可以进行功能。但是,现有的al-gorithms表现出重大的缺点。尽管当前的方法在长期轨迹上达到了很高的准确性,但它们在复杂的室内环境中的精确性和可靠性而苦苦挣扎。本文介绍了一种新型的基于功能的LiDAR SLAM系统,旨在解决这些局限性并增强短期精度和整体鲁棒性。使用现有数据集和物理机器人平台评估了所提出的系统,以解决当前实现的局限性,并在挑战现实世界中,尤其是在施工环境中展示改进的穿孔。
我们已经审查了您的第510(k)节上述设备的意图上的第510(k)节,并确定该设备在1976年5月28日,在跨国商业的法律销售的谓语中,在1976年5月28日,与医疗设备的纳入日期相关的是,该设备在法律上销售的谓词在法律上销售的谓词,该设备在法律上销售的谓词是相等的,该谓语是在医疗设备上或已纳入了医疗设备的范围。不需要批准前市场批准申请(PMA)的化妆品法案(法案)。因此,您可能会销售该设备,但要遵守该法案的一般控制条款。尽管这封信将您的产品称为设备,但请注意,一些清除的产品可能是组合产品。位于https://www.accessdata.fda.gov/scripts/cdrh/cdrh/cfdocs/cfpmn/pmn.cfm上的510(k)上市通知数据库。该法案的一般控制条款包括年度注册,设备上市,良好的制造实践,标签和禁止品牌和掺假的禁令。请注意:CDRH不评估与合同责任保证有关的信息。我们提醒您,设备标签必须是真实的,不要误导。
在半导体和高级材料行业中需要使用非接触式和非毁灭性工具,以表征散装,薄膜和2D材料的电气性能。
对陶瓷的添加剂制造的实施比其他材料类别更具挑战性,因为大多数塑形方法都需要聚合物粘合剂。激光添加剂制造(LAM)可以提供一条新的无粘合剂合并路线,因为它能够直接处理陶瓷而无需后处理。然而,陶瓷的激光加工,尤其是高性能氧化陶瓷,受到低热冲击性,弱致密性和低光吸收的限制;特别是在可见或近红外范围内。目前缺乏高性能氧化陶瓷的LAM(粉末床融合 - 激光束和定向能量沉积)的广泛审查。此最新的评论对氧化陶瓷领域的过程技术,部分属性,开放挑战和过程监测进行了详细的摘要和批判性分析。提高了准确性和机械强度的提高,可以将氧化陶瓷的含量开放到新领域。
[2] M. Narayanan等。,“通过钒掺杂:生长,光学和terahertz表征的半绝缘β-GA2O3单晶”,J。Cryst。增长,第1卷。637–638,p。 127719,7月2024。
摘要 - 在具有挑战性的环境中需要可靠的定位,需要现代机器人系统才能运行。基于激光雷达的局部化方法,例如迭代最接近的点(ICP)算法,可能会在几何无知的环境中遭受损害,这些环境已知,这些环境已知会导致点云登记性能恶化,并沿弱受约束方向推动散落的优化。为了克服这个问题,这项工作提出了i)稳健的可局部性检测模块,ii)局限性感知到的受限的ICP优化模块,该模块将其与统一的局限性检测模块相结合。通过利用扫描和地图之间的对应关系来实现所提出的可区分性检测,以分析优化的主要方向的对齐强度,作为其细粒度的LIDAR固定性分析的一部分。在第二部分中,然后将此可本质性分析集成到扫描到映射点云注册中,以通过执行受控更新或离开优化的脱位方向来生成无漂移姿势更新。所提出的方法经过彻底评估并将其与模拟和现实世界实验1中的最新方法进行了比较,证明了激光挑战环境的性能和可靠性提高。在所有实验中,所提出的框架表明没有环境特异性参数调整的准确且可推广的可局部性检测和可靠的姿势估计。
摘要...............................................................................................................................................................................................................................................................................................................................................................................................................................................................................
使用分类,可以提取包括高植被在内的所有点,并过滤掉所有剩余的点。要从高植被点确定单个树实例,需要执行一些额外的处理步骤。这些实例分割步骤是传统的 GIS 方法,需要采用这些方法才能在当前数据集上发挥最佳作用。为了达到预期结果,需要结合使用树木特征(例如树冠最大值、树桩位置和更多地理空间算法)。可以确定每个树段的树桩位置和高度,而树冠范围则通过 2D 投影确定。之后,分类和实例分割的结果可以转换为其他常见的地理数据类型(即 GeoJSON、Esri 形状文件),并丰富其他信息(例如高度属性和直径)。
1。引言具有越来越多的技术在建模和仿真领域可用,激光扫描仪使用户能够重新创建真实对象和/或环境的3D模型。这样的结果允许在虚拟和建设性仿真中使用3D模型,目的是进行何种分析以及支持基于仿真的设计和系统采集。对象以非常高的精度复制(即从120 m检测点少于1 mm的错误率),然后将它们放入模拟场景中。如今,激光扫描仪是多功能且用户友好的工具,旨在在3D型号的准确性及其外观之间进行良好的权衡,作为模拟场景的一部分。这是通过与激光扫描仪一起工作的相机拍摄的图片获得的。在整个论文中所解释的过程中,获得最终结果的过程非常简单,很快,很少有运营商的参与度。本文提出的应用程序示例与从3D陆地激光(北约罗马北约建模与模拟中心的财产)进行的意大利军队创建了称为“ Freccia”的军用装甲车。车辆的整体尺寸为8.6 m,宽度为2,9 m,高度为3 m。作为任何军用车辆,Freccia车辆非常复杂,包括许多相关结构
摘要:镍基高温合金具有优异的耐腐蚀和耐高温性能,在能源和航空航天工业中广受欢迎。镍合金的直接金属沉积 (DMD) 已达到技术成熟度,可用于多种应用,尤其是涡轮机械部件的修复。然而,DMD 工艺过程中的零件质量和缺陷形成问题仍然存在。激光重熔可以有效地预防和修复金属增材制造 (AM) 过程中的缺陷;然而,很少有研究关注这方面的数值建模和实验工艺参数优化。因此,本研究的目的是通过数值模拟和实验分析来研究确定重熔工艺参数的效果,以优化 DMD 零件修复的工业工艺链。热传导模型分析了 360 种不同的工艺条件,并将预测的熔体几何形状与流体流动模型和选定参考条件下的实验单轨观测值进行了比较。随后,将重熔工艺应用于演示修复案例。结果表明,模型可以很好地预测熔池形状,优化的重熔工艺提高了基体和 DMD 材料之间的结合质量。因此,DMD 部件制造和修复工艺可以从此处开发的重熔步骤中受益。
