弗雷德里克斯堡,弗吉尼亚州22406摘要美国陆军研究实验室(ARL)正在探索技术,以提供低成本的火灾,适用于直接和间接消防武器系统。这些应用之一涉及一个前向观察者(FO),用激光斑点指定目标,并在船上搜索弹药,检测反射能量以允许终端指导。这种方法,称为半活性激光(SAL)指南,已用于许多空运弹药中,包括炸弹,导弹和弹丸。但是,这些系统的成本是由高质量光学,高灵敏度检测器和专业电子设备驱动的,它阻碍了它们迁移到枪支弹药(例如迫击炮,炮兵和手榴弹)中。要探索,开发和展示最低的成本解决方案,ARL投资了一个称为较小,更轻,更便宜的弹药组件(SLCMC)的陆军技术目标(ATO)。具体来说,基于商业组件(COTS)和质量生产技术的Sal Seeker硬件正在原型中,用于与枪支发射的弹丸和激光目标指定器一起使用。Seeker系统由几个印刷电路板板,一个微处理器,四翼检测器和模制的光学镜头单元组成。该寻求者旨在快速更新弹丸孔的角度,与其他皮带向下的传感器接口,并将数据馈送到机上指导,导航和控制(G,N&C)系统中,以允许进行弹丸操作。探索者的设计和基本特征将在论文和演示中进行讨论和介绍。关键词寻求者,弹药,精密火灾,炮兵,半活性激光,指导系统,带有动态科学的绑带传感器 *,并根据ARL,APG,MD
持续的注意力描述了我们不断专注于给定任务的能力。这种能力由我们的唤醒生理状态调节。尽管持续注意力的失误与唤醒失调有关,但潜在的生理学机制仍不清楚。新兴的工作表明,在睡眠状的慢波清醒中的入侵是向睡眠过渡的标记,可以机械地解释注意力失误。这项研究旨在通过对单胺系统的药理学操纵暴露,类似睡眠的慢波发生与持续注意力失败的行为结合之间的关系。在四个独立的实验性课程中,在一项双盲,随机控制试验中,有32名健康的男性参与者接受了甲式化甲酯,阿诺西汀,西妥位或安慰剂。在每个会话期间,脑电图(EEG)用于测量神经活动,而参与者完成了需要持续关注的视觉任务。甲化酯增加了皮质和皮质下区域的促唤醒的多巴胺和去甲肾上腺素,改善了行为性能,而原子氨酸却可以增加多巴胺和去甲肾上腺素,主要增加了额叶皮质的高度超过额叶。此外,增加促进睡眠的5-羟色胺的西妥位导致了更多的试验。基于脑电图记录,西妥位酰胺也与睡眠状的慢波增加有关。重要的是,与诸如功率之类的经典唤醒标记相比,只有慢速波会在特定区域特异性的时期中差异预测的错过和更快的响应。这些结果表明,唤醒的减少会导致清醒期间局部睡眠侵入,这可能与冲动性和迟钝性有关。
Siham Telitel,Jason C Morris,Yohann Guillaneuf,Jean-LouisClément,Fabrice Morlet-Savary等。激光直接编写硝基氧化物介导的pho介导的聚合物微结构的激光撰写。ACS应用材料和界面,2020,12(27),pp.30779-30786。10.1021/ac-Sami.0C06339。hal-02997174
已经以其非凡的品质而闻名,例如极好的热量散热,暴露于温度变化时的最小不均匀膨胀以及传播紫外线光的能力(一种来自阳光的光和其他特殊灯(如特殊灯)的光线,但它是人眼看不见的),BZBP是一种理想的选择,可用于lasviole deep listav instrang intraviole。这些系统在医学诊断,半导体生产和尖端科学研究等领域至关重要。
太空发展局(SDA)已采取措施开发激光通信技术,但尚未在太空中充分证明它。SDA计划将每2年推出卫星和相关系统的迭代,称为批量。SDA的示范批次(以0或T0的形式引用)面临着发展挑战和延误,并且尚未完全证明其预期的能力。例如,SDA计划在2022年推出第一个T0卫星,但于2023年和2024年推出。此外,这组最初的卫星尚未完全证明太空中的激光通信技术。特别是,截至2024年12月,SDA报告说,其T0中的四个主要承包商之一表明了八个计划的激光通信功能中的三个,而另一个承包商则证明了八个功能之一。其余两个承包商尚未获得任何计划的能力。
HGCDTE APD检测器模块电信是在CEA/LETI上开发的,用于大气刺激和自由空间光学(FSO)。开发是由可以在每个检测器模块中调整的通用子组件的设计和制造驱动的,以满足每个应用程序的特定检测器要求。从目前为大气激光雷达开发的探测器模块所设定的挑战详细介绍了此类子组件的优化,该挑战在AIRBUS的R&T CNES项目的范围内以及H2020 Project holdon的R&T项目范围以及FSO,以及在ESA项目的范围内与Mynaric Laserc的lasercom lasercom gmbhhs of airbus和FSO。最近已将两个检测器模块传递到空中客车DS进行广泛的LIDAR仿真测试。表明,与先前开发的大面积检测器相比,输入噪声,NEP = 10-15fw/√Hz(5个光子RMS)已减少了三分,尽管带宽已增加到180 MHz,以响应高空间深度分辨率的要求。在发现短光脉冲后200 ns时,时间延迟为10 -4,这与诸如测深分析之类的激光雷达应用兼容。
追求高水平的掺杂而不会恶化结晶度是非常困难的,但对于释放材料的隐藏力至关重要。这项研究证明了通过激光至关重要的自由基,硼龙二氢化合物(BH 2)的激光振动激发(BH 2)在燃烧化学蒸气期间保持晶格完整性的有效途径。改进的钻石结晶度归因于硼氢化硼(BH)的相对丰度的激光,热抑制的热抑制,其过度存在会诱导硼隔离并扰乱结晶。BDD的硼浓度为4.3×10 21 cm -3,膜电阻率为28.1毫米·CM,孔迁移率为55.6 cm 2 v -1 s -1,超过了商业BDD。高导电和结晶的BDD在传感葡萄糖方面具有提高的效率,证实了激光激发在产生高性能BDD传感器方面的优势。在掺杂过程中重新获得激光激发的结晶度可以消除半导体行业的长期瓶颈。
在古典世界中遇到的自由度之间的量子纠缠是由于周围环境而挑战。为了阐明此问题,我们研究了在两分量量子系统中产生的纠缠,该量子系统包含两个巨大的颗粒:一个自由移动的光电电子,该光学的光电膨胀到中镜长度尺度和浅色的原子离子,代表光和物质的混合状态。尽管经典地测量了光电子光谱,但纠缠使我们能够揭示有关离子穿着状态的动力学的信息,以及由种子自由电子激光器传递的飞秒极端紫外线脉冲。使用时间依赖的von Neumann熵来解释观察到的纠缠产生。我们的结果揭示了使用自由电子激光器的短波长相干脉冲来生成纠缠光电子和离子系统来研究距离的怪异作用。
轻,无质量,没有阴影;在普通情况下,光子彼此彼此之间的经历。在这里,我们演示了一个像物体一样起作用的激光束 - 当光束被另一个光源照亮时,光束会在表面上施放阴影。我们观察到一个常规的阴影,从肉眼可以看出,它遵循其落在表面的轮廓上,并遵循物体的位置和形状(激光束)。特别是,我们使用涉及四个原子水平的非线性光学过程。我们能够通过施加另一个垂直激光束来控制透射激光束的强度。我们通过实验测量阴影对激光束功率的对比度的依赖性,最多发现约22%,类似于阳光明媚的一天的树阴影。我们提供了一个理论模型,可以预测阴影的对比。这项工作为制造,成像和照明开辟了新的可能性。©2024 Optica Publishing Group根据Optica Open Access Publishing协议的条款