基因选择性转录因子通过与其靶基因调节区域内的特定DNA元件结合(1)。但是,并非完全定义此DNA结合的序列要求。几个参数,例如蛋白质 - 蛋白质相互作用与相邻结合的因素,DNA结构的影响(弯曲等)。),重要的是,结合位点与认知因子的比率确定给定转录因子是否可以有效地与相应的结合位点相互作用。体外和大概也在体内也是如此,对于确定转录因子是否会与其最佳识别序列的变体结合,因此,它的基因调节。在这些考虑因素中提示,我们询问是否存在一种蜂窝机制,该机制是否存在在转录因子活动和可用目标位点的繁琐之间保持平衡。对AP-1家族成员的特征良好转录因子C-Jun进行了实验(2-4)。包含AP-1结合位点的启动子是C-Jun调节的目标。C-Jun的活性受到多种机制的紧密控制,并且对蛋白质的异常调节会导致恶性转化和致癌作用(5)。在这项研究中,我们描述了一种机制,该机制通过改变其磷酸化态的DNA结合活性,取决于细胞中存在的C-Jun结合位点的浓度。这种机制可以用来设置和微调C-Jun与其结合位点的比率。有趣的是,与这种现象有关的磷酸化位点与以前据报道经历信号依赖性去磷酸化相同。
近年来,嵌合抗原受体 (CAR) T 细胞癌症免疫疗法在临床上取得了长足进展。然而,与安全性相关的挑战仍然存在;一个主要问题是当 CAR 触发对健康细胞上存在的抗原的反应(靶向、肿瘤外反应)时。改善这种情况的策略依赖于受体亲和力和信号传导之间的复杂关系,这样人们就可以设计出一种仅由表达高抗原水平的肿瘤细胞激活的 CAR。在这里,我们开发了一个 CAR T 细胞展示平台,该平台具有稳定的基因组表达和基于白细胞介素 2 信号传导的快速功能筛选。从对靶抗原具有高亲和力的 CAR 开始,我们结合 CRISPR-Cas9 基因组编辑和深度突变扫描来生成抗原结合域变体库。该库根据抗原结合或细胞信号传导进行了多轮选择。对所得文库进行深度测序和比较分析,发现特定变体富集和消耗,我们从中挑选出基于抗原表达水平被肿瘤细胞选择性激活的 CAR。我们的平台展示了如何结合基于功能筛选的定向进化和深度测序引导选择来提高 CAR 的选择性和安全性。
两种 OGG1 调节剂均减少了 KBrO 3 诱导的 AP 位点(图 2G),我们发现 TH5487 的 DNA 链断裂(γH2AX)更少(图 2H),表明 OGG1 糖基化酶活性受损会导致 AP 位点数量减少。相反,我们发现 TH10785 的 DNA 链断裂(γH2AX)更多(图 2H),证实 TH10785 在细胞中的催化活性会导致 DNA 链断裂。总之,这些结果表明 TH10785 激活的 OGG1 具有新的细胞作用,即比 8-oxoG 更倾向于 AP 位点。接下来,我们测试了 TH10785 在细胞中诱导 β,δ 消除的程度。我们假设同时刺激 β,δ-消除和阻断 PNKP1 活性应会使系统因未修复的 DNA 单链断裂而超载(图 1A)。因此,在单独暴露于 OGG1 抑制剂或激活剂(图 3A、图 S26)和类似化合物(表 S6 和图 3B)或与 PNKP1i 联合使用的 U2OS 细胞中,使用标记物 γH2AX 和 53BP1 通过 IF 测量 DDR。我们发现 PNKP1 抑制剂只有与引起体外 β,δ-裂解酶活性的 OGG1 激活剂联合使用时才会诱导强 DDR。为了评估这种因果关系,我们使用 RNA 测序监测转录变化,发现 PNKP1i 与 TH10785 联合使用(而非单独使用)会诱导识别和修复 DNA 双链断裂的关键参与者的转录显着上调(图 3C)。此外,TH10785 与 PNKP1 抑制相结合时细胞活力降低,但 TH5487 则不会降低(图 3D 和 3E)。这些结果表明,TH10785 激活 OGG1 β,δ-裂解酶活性在体外和细胞内均会发生,并且 PNKP1 对于避免 DNA 损伤的积累和随之而来的细胞死亡至关重要。总之,我们提出了一种新概念,即通过酶导向的小分子催化剂诱导 OGG1 β,δ-裂解酶活性,结合到酶的活性位点(图 3F、S27 和 S28)。TH10785 的存在引起的新催化功能更倾向于 AP 位点而不是 8-oxoG,并在体外和细胞内产生 PNKP1 依赖性。改善或重新规划处理氧化性DNA损伤的修复途径对许多疾病(如炎症、癌症、阿尔茨海默氏症或衰老)具有重要意义,这里概述的概念允许以新的方式控制和重新规划修复途径(24)。
在大鼠大脑皮层中研究了腺苷酸环化酶和鸟嘌呤核苷酸结合蛋白(G蛋白)在锂对脑功能的慢性作用中的可能作用。发现,用锂(具有治疗相关的血清水平为1 mm)对大鼠的慢性治疗增加了mRNA和蛋白质的水平,用于钙调蛋白敏感(1型)和钙调蛋白敏感(2型)形式的腺苷酸环化酶和抑制蛋白质的mRNA和蛋白质水平降低,用于抑制性gja2 gja2 gja2 gja2 gja2 gja2。慢性锂不会改变其他G-蛋白亚基的水平,包括GA,GSA和GJF。在短期锂治疗(最终血清水平为-1 mM)或以较低剂量的锂(血清水平为-0.5 mm)下,h含腺苷酸环化酶和GIA的锂调节均未观察到短期锂治疗(最终血清水平为-1 mm)。结果表明,腺苷酸环化酶的上调和GJA的下调可能代表了分子机制的一部分,锂可以改变脑功能并在治疗情感障碍的治疗中发挥其临床作用。
6. 如果您在“我的软件”选项卡中没有看到 Luminar AI,则可能是您使用其他电子邮件地址购买的。如果是这种情况,请向下滚动并在“链接我的许可证”块中将您的 Luminar AI 许可证链接到您现有的 Skylum 帐户。为此,请输入您购买 Luminar AI 时使用的电子邮件地址,然后单击“链接我的许可证”。之后,请转到新电子邮件地址的收件箱并验证您的电子邮件。7. 如果您在 App Store 上购买了 Luminar AI,请单击链接向我们的支持团队提交购买证明,他们会立即为您提供帮助!
秀丽隐杆线虫是一种用于研究发育和衰老遗传学的多功能模型生物,通过给线虫喂养表达特定 dsRNA 的细菌可以抑制其基因表达。之前已证实通过常规转基因技术过表达缺氧诱导因子 1 ( hif-1 ) 或热休克因子 1 ( hsf-1 ) 可延长线虫寿命。然而,目前尚不清楚其他基因过表达方法是否可行,尤其是随着基于 CRISPR 的技术的出现。本文中,我们表明,给经过基因改造以稳定表达 Cas9 衍生的合成转录因子的秀丽隐杆线虫喂养表达启动子特异性单向导 RNA (sgRNA) 的细菌也可以激活基因表达。我们证明,通过摄取针对 hif-1 或 hsf-1 各自启动子区域的 sgRNA 激活 CRISPR 可增加基因表达并延长秀丽隐杆线虫的寿命。此外,作为旨在使用 CRISPR 激活秀丽隐杆线虫的未来研究的计算机资源,我们提供了预测的启动子特异性 sgRNA 靶序列,用于超过 13,000 个秀丽隐杆线虫基因,并具有实验定义的转录起始位点。我们预计本文描述的方法和组件将有助于促进全基因组基因过表达研究,例如,通过将表达 sgRNA 的细菌喂给线虫来诱导转录,以识别衰老或其他感兴趣的表型的调节因子。
从http://aacrjournals.org/cancerdiscovery/article-pdf/doi/10.1158/2159-8290.cd22-22-22-0952/3404475/cd-22-22-22-0952.pdf by bern University by Bern Universiti
我们之前在一项横断面研究中发现胰岛素抵抗 (IR) 与血浆黄嘌呤氧化还原酶 (XOR) 活性相关。然而,IR 是否会诱导 XOR 活性增加尚未阐明。这项回顾性纵向观察研究包括 347 名参与者(173 名男性,174 名女性),他们每年接受健康检查并且未接受过药物治疗。在基线时确定了稳态模型评估 IR (HOMA-IR) 指数以及身体和实验室测量值。在基线和 12 个月的随访检查中,使用我们基于 [ 13 C 2 , 15 N 2 ] 黄嘌呤和液相色谱/三重四极杆质谱的新型检测方法测定血浆 XOR 活性。 IR 受试者(定义为 HOMA-IR 指数 ≥ 1.7(n = 92))的血浆 XOR 活性水平显著(p < 0.001)高于无 IR 的受试者(n = 255),12 个月后,180 人(51.9%)的血浆 XOR 活性增加。多变量线性和逻辑回归分析表明,基线时的 IR(而不是 BMI 或腰围)与血浆 XOR 活性显著相关(β = 0.094,p = 0.033),并且经过调整各种临床参数(包括基线时的血浆 XOR 活性)后,12 个月期间血浆 XOR 活性增加(比值比,1.986;95% 置信区间,1.048–3.761;p = 0.035)。这些结果表明,IR 以与肥胖无关的方式诱导血浆 XOR 活性增加。
免疫治疗被广泛认为是一种很有前途的癌症治疗方法,但肿瘤微环境(TME)的免疫效应相抑制和免疫相关不良事件的产生限制了它的应用。研究表明,声动力疗法(SDT)能在杀死肿瘤细胞的同时有效激活抗肿瘤免疫。SDT产生肿瘤的细胞毒物质,然后在超声作用下选择性激活声敏剂,导致细胞凋亡和免疫原性死亡。近年来,各种SDT单独使用以及SDT与其他疗法联合使用被开发来诱导免疫原性细胞死亡(ICD)和增强免疫治疗。本文综述了近年来SDT与纳米技术的研究进展,包括单独使用SDT的策略、基于SDT的协同诱导抗肿瘤免疫的策略以及基于SDT的多模态免疫治疗的免疫疗法。最后讨论了这些基于SDT的疗法在癌症免疫治疗中的前景与挑战。
