获取独家产品信息,尽享促销优惠!立即订阅,不容错过
* 限···时··优惠
摘要。尽管LiDAR语义分割迅速发展,但最先进的方法通常融合了源自机械旋转激光雷的基准的专门设计的诱导偏差。这可以将模型的通用性限制在其他类型的LiDAR技术中,并使超参数调整更加复杂。为了解决这些问题,我们提出了一个广义框架,以通过我们稀疏的焦点调制来代替窗户注意力来适应市场中普遍存在的各种各样的发光剂。我们的SFPNET能够阐述多层上下文,并使用栅极机制动态聚集它们。通过实现渠道信息查询,编码包含本地和全局上下文的功能。我们还引入了一种新型的大型混合溶质激光雷达语义segmentation数据集,用于机器人应用。sfpnet表现出对源自机械旋转激光雷达的常规基准测试的竞争性能,同时在从固态激光拉尔的基准上实现最新结果。此外,它在我们的新型数据集中的现有方法胜过来自混合固体激光雷达的新型数据集。代码和数据集可从https://github.com/cavendish518/sfpnet和https://www.semanticindustry.top获得。