在这项研究中,确定了纤维素和硝酸纤维素样品的标准形成焓和熵。这些特征用于热力学分析整个纤维素样品和局部硝化的大量硝化,仅对纤维素的无定形结构域(AD)。发现,纤维素的大量硝化作用至1.5的替代程度(DS)是吸热性的,主要取决于温度 - 熵成分对负Gibbs电位的贡献。但是,如果DS高于1.5,则大量硝化变为放热,其可行性取决于焓对Gibbs电位的影响。在纤维素AD的局部硝化的情况下,对Gibbs电位的主要贡献是由反应焓决定了该过程的可行性。表明,随着硝酸纤维素ds的增强,反应的吉布斯电位的负值增加。因此,对较高DS的纤维素硝化在热力学上是有利的。由于局部硝化样品是无定形硝酸纤维素和结晶纤维素的共聚物,因此它们的亲水性应比纤维素明显小。因此,可以预期,局部硝化方法将为纤维素材料的廉价疏水方法找到广泛的实际应用。
冷却剂还可以充当主持人,将快速裂变中子能量的能量从其平均值2 MeV降低到0.025 eV的热能能量,在裂变裂变元件的概率大大增加。中子反射器围绕着核心。冷却液的热量被移至传热周期,最终产生了其他应用,例如生产淡化,产生氢或区域的热量。安全系统被整合到设计中,以在所有预见的条件下为操作员和公众提供安全性。1.2能量转换原理,流量系统的传感器的某些能量转换原理适用于工程和实践科学中的特定案例,同时仍属于热力学定律的普遍保护。可以简单地将能量转换或从环境中提取的第一个基本原理作为:
摘要:人类面临着减少环境影响的挑战。因此,全球许多专家一直在研究生产过程和能源的有效利用。以这种方式,开发更清洁,更有效的能源系统对于可持续发展至关重要。目前的工作分析了在墨西哥特定位置运行的太阳能驱动电动冷却系统的技术可行性。理论系统整合了有机兰金和单阶段吸收冷却周期。抛物线槽收集器和存储系统集成了太阳系。使用NREL的SAM软件为典型的气象年度建模。有机周期分析的工作流体包括苯,环己烷,甲苯和R123,而吸收系统的工作流体是氨水混合物。周期的第一和第二定律表演是在各种操作条件下确定的。参数(例如能量利用因子,涡轮机功率,COP和EXERGY效率)的参数已在各种操作条件下报道。发现,当兽人利用苯在ORC上用作工作流体时,最高的能量利用因子分别为80℃和20°C的ACS浓缩温度,并在0°C的冷却温度下为0°C。最佳的exergy效率为0.524,但在相同的冷却温度下为0.524。
海洋热能转化(OTEC)系统使用温暖的海面水和深冷水之间的温度差来产生电力。由于表面温水与深海冷水之间的温度差异,与化石燃料驱动的发电厂相比,这些系统的热效率很低。在本研究中,提出了一种提高OTEC循环的输出功率,热效率和热量存储的方法,使用了现有的热发电厂的温水出口代替地表水,而地表水通常在基本的OTEC周期中使用。结果表明,考虑到基本OTEC周期中的平均电净功率,能量和充电效率分别为3.34%和17.2%。然后,使用两个阶段的涡轮机研究了建议的OTEC循环,并在能量和充电方面加热。比较两种配置的结果表明,在拟议的周期中,平均输出功率每月增加552 kWh,能量和发射效率分别提高了0.048%和0.31%。作为现有的热循环性能,对实际合并循环发电厂(CCPP)进行了案例研究,以拟议的周期进行建模。结果表明,与基本周期相比,使用CCPP冷凝器的出口水分别提高了17.72 MWH,而能量和易发效率分别提高了1.432%和8.02%。另外,使用冷凝器出口温水,每天平均生产1829吨淡水,并且CCPP的热效率提高了1.87%。
可充电金属阳极电池是有希望的锂离子电池开发。然而,金属阳极与电解质的高反应性导致形成固体 - 电解质相间(SEI)。电解质设计是控制金属阳极电池中SEI组成的关键手柄,但是我们对电解质(特别是阳离子的第一个协调球)的理解是有限的。在本文中,对离子溶剂化和络合技术的研究将其带入电池电解质的背景下。在一组偏光溶剂中,总结了文献中的相关数据,并补充了溶液(δsol H)的焓(δsol H)和转移(δTrh)测量的焓(δTrh)测量。通过考虑溶剂和阴离子特性,尤其是溶剂捐赠和阴离子的大小,观察到的趋势是合理化的。使用一组示例电解质来实现LI +配位球,等温滴定量热法(ITC)和电位滴定(PT),以探测Li +协调复杂的较弱的溶剂的热力学演化,该溶剂是由弱溶剂的较弱的溶剂所取代的,该溶剂是由强度溶剂替代的。拉曼光谱法用于确认溶剂位移是按预期发生的,并且研究了阴离子对ITC测量的影响。开发了一个统计结合模型,该模型符合实验滴定数据,以提取Gibbs自由能(ΔG),焓(ΔH)和熵(ΔS)的平均变化。使用此方法对EC的优先溶剂化趋势进行了量化的EC:DMC和EC:PC电解质,并与其他工人观察到的偏好进行了比较。本论文为将来的有关更复杂的电池电解质配位环境的热力学研究及其与SEI组成的联系提供了一个框架。
摘要 — 量子信息科学的最新进展揭示了量子多体系统的复杂动力学,量子信息扰乱就是一个很好的例子。受量子信息热力学的启发,这一观点旨在综合几项关键研究的关键发现并探索量子扰乱的各个方面。我们考虑了诸如非时间有序相关器 (OTOC)、量子互信息和三部分互信息 (TMI) 之类的量词,它们与热力学的联系,以及它们在理解混沌与可积量子系统中的作用。我们重点关注代表性示例,涵盖了一系列主题,包括量子信息扰乱的热力学以及量子引力模型(如 Sachdev-Ye-Kitaev (SYK) 模型)中的扰乱动力学。研究这些不同的方法使我们能够强调量子信息扰乱的多面性及其在理解量子力学和热力学交叉领域的量子多体动力学基本方面的重要性。
不同的氟、羟基和甲氧基取代的苯甲醛残基(图 1)对分离的螺旋体肌肉幼虫表现出显着的体外驱虫活性,以及对 MCF-7 和 AR-230 乳腺癌细胞的强效抗增殖活性(Anichina 等人 2021;Argirova 等人 2021、2023)。这些化合物还能够抑制微管蛋白聚合(Argirova 等人 2021)。含有羟基苯基和甲氧基苯基部分的 1H-苯并咪唑-2-基腙在卵磷脂和脱氧核糖模型系统中表现出强大的抗氧化和自由基清除特性以及铁诱导的氧化损伤。密度泛函理论计算表明,1H-苯并咪唑-2-基腙具有非常通用的自由基清除特性,这是因为存在多个反应位点,这些反应位点的特点是反应焓相对较低,并且可以通过不同的反应途径同时起作用:非极性介质中的氢原子转移、极性介质中的连续质子损失电子转移以及极性和非极性介质中的自由基加合物形成 (Argirova 等人,2021 年)。我们选择在这里检查化合物 2H4MB-BH 施加后 HSA 的荧光曲线,并利用这些曲线表征 2H4MBBH-HSA 相互作用参数。所采取的方法是表明荧光参数有显著的变化,这将有助于评估合成的抗癌镇静剂 2-(2-羟基-4-甲氧基苄亚甲基)-1-(1H-苯并咪唑-2-基)肼的恢复效果。
摘要:分支酸变位酶 (CM) 长期以来一直用作计算化学中基准测试新方法和工具的模型系统。尽管这些酶在文献中占有重要地位,但活化焓和熵在催化分支酸转化为预苯酸盐方面所起的作用程度仍有待商榷。了解这些参数是充分理解分支酸变位酶机制的关键。在本研究中,我们利用一系列温度下的 EVB/MD 自由能扰动计算,使我们能够从单功能枯草芽孢杆菌 CM 和铜绿假单胞菌的混杂酶异分支酸丙酮酸裂解酶催化的反应的活化自由能的阿伦尼乌斯图中提取活化焓和熵。与未催化反应相比,我们的结果表明,两种酶催化反应的活化焓均显著降低,而对活化熵的影响相对较小,表明酶催化的 CM 反应是焓驱动的。此外,我们观察到枯草芽孢杆菌的单功能 CM 比其混杂对应物更有效地催化此反应。过渡态反应途径的结构分析支持了这一点,从中我们确定了解释反应焓驱动性质以及两种酶之间效率差异的关键残基。
。cc-by-nc-nd 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他授予Biorxiv授予Biorxiv的许可,以永久显示预印本。这是该版本的版权持有人,该版本发布于2023年12月24日。 https://doi.org/10.1101/2023.12.23.573214 doi:Biorxiv Preprint
医学研究人员在产生创新药物的同时,医学研究人员面临着一个重大障碍,例如时间承诺,大量成本,确定药物的安全性,降低的溶解性和实验数据不足。通过研究分子的结构特性,化学图理论在推进药物开发和设计中起着重要作用。为了改善药物研究并评估治疗的有效性,基于学位的拓扑指数在定量结构 - 培训关系(QSPR)分析中起着至关重要的作用,有助于估计其性质和潜在功效。在本文中,计算了十个基于降低度的拓扑指数,并针对15种卒中药物(atenolol,baclofen,dapsone,diclofenac,Diclofenac,Dopamine等)进行了QSPR分析。使用线性回归模型与七种物理化学特性(摩尔质量,熔点,熔点,复杂性,logp,蒸气压和溶解度)相关。这种方法通过提供对分子结构与药理特性之间相关性的有价值的见解来增强中风的发现和开发。这种理论技术可能会帮助化学家和制药行业工人预测中风药物,而无需昂贵的测试。关键词中风药物;拓扑指数;回归模型; QSPR分析。