RowHammer (RH) 是现代 DRAM 芯片的一个重大且日益恶化的安全性、可靠性问题,可利用该问题来破坏内存隔离。因此,了解真实 DRAM 芯片的 RH 特性非常重要。遗憾的是,之前没有研究广泛研究现代 3D 堆叠高带宽内存 (HBM) 芯片的 RH 漏洞,而这种芯片通常用于现代 GPU。在这项工作中,我们通过实验表征了真实 HBM2 DRAM 芯片的 RH 漏洞。我们表明:1) HBM2 内存的不同 3D 堆叠通道表现出明显不同级别的 RH 漏洞(误码率相差高达 79%),2) DRAM 组末尾的 DRAM 行(具有最高地址的行)表现出的 RH 位翻转明显少于其他行,3) 现代 HBM2 DRAM 芯片实现了未公开的 RH 防御措施,这些措施由定期刷新操作触发。我们描述了我们的观察结果对未来 RH 攻击和防御的影响,并讨论了理解 3D 堆叠存储器中的 RH 的未来工作。
agil.chung@sksiltron.com、bcharles.lee@sksiltron.com、candrey.soukhojak@sksiltron.com、dtawhid.rana@sksiltron.com agil.chung@sksiltron.com、bcharles.lee@sksiltron.com、candrey.soukhojak@sksiltron.com、dtawhid.rana@sksiltron.com agil.chung@sksiltron.com、bcharles.lee@sksiltron.com、candrey.soukhojak@sksiltron.com、dtawhid.rana@sksiltron.com agil.chung@sksiltron.com、bcharles.lee@sksiltron.com、candrey.soukhojak@sksiltron.com、dtawhid.rana@sksiltron.com agil.chung@sksiltron.com, bcharles.lee@sksiltron.com, candrey.soukhojak@sksiltron.com、dtawhid.rana@sksiltron.com agil.chung@sksiltron.com、bcharles.lee@sksiltron.com、candrey.soukhojak@sksiltron.com、dtawhid.rana@sksiltron.com agil.chung@sksiltron.com、bcharles.lee@sksiltron.com、 candrey.soukhojak@sksiltron.com、dtawhid.rana@sksiltron.com agil.chung@sksiltron.com、bcharles.lee@sksiltron.com、candrey.soukhojak@sksiltron.com、dtawhid.rana@sksiltron.com agil.chung@sksiltron.com、bcharles.lee@sksiltron.com、 candrey.soukhojak@sksiltron.com, dtawhid.rana@sksiltron.com agil.chung@sksiltron.com、bcharles.lee@sksiltron.com、candrey.soukhojak@sksiltron.com、dtawhid.rana@sksiltron.com agil.chung@sksiltron.com、bcharles.lee@sksiltron.com、candrey.soukhojak@sksiltron.com、 dtawhid.rana@sksiltron.com
为了分析时间键量尺寸,我们使用相同的示意图,但是光子从右到左传播。考虑两种脉冲在临时分离的ΔT中,从右侧进入干涉仪。现在,开关设置为早期(晚)脉冲穿过长(短(短)路径)。在左分离器中,两个过程“早期的脉搏走了很长的路”,“晚脉冲走了短路”,干扰了。通过调整η和ϕ,可以部分或完全破坏性或建设性,这意味着我们可以投射到2-D Hilbert空间的任何任意状态。请注意,由于我们的设备没有快速的光学开关,因此我们可以在输出处获得三个时间座(图2(c)):这两种脉冲分别采用长路径或短路,即“末期”或“早期”,以及一个“中间”时间键,包括干扰“早期”和“晚期”过程。我们可以通过探测此消息后的“中间”时间键来分析时间络合量Qubit。
1数据科学研究所,应用科学与艺术大学瑞士西北大学(FHNW),Bahnhofstrasse 6,5210 Windisch,瑞士windisch,电子邮件:andrea.battaglia@fattaglia@fhnw.ch 2 27,8039瑞士苏黎世3地球和太空科学学院,北京大学,北京大学,100871年,中国公关4物理研究所,大学Plats 5,8010 Graz,Austria,奥地利5 Skolkovo科学技术研究所,Bolshoy Bowlevard 30,Bld。1,121205俄罗斯莫斯科6号太阳能和环境研究的讲座天文台,格拉兹大学,坎泽尔霍时代19,9521,奥地利特雷芬7莱布尼兹莱布尼兹天体物理学研究所Potsdam(AIP) Daccó”,Universitàdellasvizzera Italiana,通过Patocchi 57,6605瑞士Locarno,瑞士9 Physikalisch-MeTEOROLOGICALIOG OBSEROLOGIOL PAVOSATOR DAVOS,世界辐射中心,7260 DAVOS DORF,瑞士DAVOS DORF,瑞士10号太空科学实验室,加利福尼亚大学7 Gauss University,7 Gauss Way,94720 berkeley,Ucarkeley <
随着信息技术迈向大数据时代,传统的冯·诺依曼架构在性能上显示出局限性。计算领域已经在应对访问内存所需的延迟和带宽(“内存墙”)以及能量耗散(“电源墙”)方面遇到了很多困难。这些具有挑战性的问题,例如“内存瓶颈”,要求进行大量的研究投资来开发下一代计算系统的新架构。脑启发计算是一种新的计算架构,为人工智能计算提供了一种高能效和高实时性的方法。脑启发神经网络系统基于神经元和突触。忆阻器件已被提议作为创建神经形态计算机应用的人工突触。在本研究中,对后硅纳米电子器件及其在脑启发芯片中的应用进行了调查。首先介绍了神经网络的发展,回顾了当前典型的类脑芯片,包括以模拟电路为主的类脑芯片和全数字电路的类脑芯片,进而引出了基于后硅纳米电子器件的类脑芯片设计。然后,通过对N种后硅纳米电子器件的分析,阐述了利用后硅纳米电子器件构建类脑芯片的研究进展。最后,对基于后硅纳米电子器件构建类脑芯片的未来进行了展望。
摘要 — 量子计算机为特定的计算密集型经典问题提供了更快的解决方案。然而,构建容错量子计算机架构具有挑战性,需要集成多个量子位和优化的信号路由,同时保持其量子相干性。由于各种元件之间的材料和热力学不匹配,在平面单片器件架构中实验实现具有多种功能组件的量子计算机具有挑战性。此外,它需要复杂的控制和路由,导致寄生模式和量子位相干性降低。因此,可扩展的中介层架构对于在保持量子位相干性的同时合并和互连复杂芯片内的不同功能至关重要。因此,异构集成是扩展量子位技术的最佳解决方案。我们提出了一种异构集成量子芯片光电子中介层作为高密度可扩展量子位架构的解决方案。我们的技术可实现大批量生产,并为片上、芯片到芯片以及低温到外界的互连提供新颖的光学 I/O 解决方案。
我们制作了一种基于人工智能的数字病理学 (AI-DP) 设备的原型,以探索自动扫描和检测用 Kato-Katz (KK) 技术制备的粪便中的蠕虫卵,该技术是诊断土源性蠕虫 (STH;蛔虫、鞭虫和钩虫) 和曼氏血吸虫 (SCH) 感染的现行诊断标准。首先,我们将原型全玻片成像扫描仪嵌入到柬埔寨、埃塞俄比亚、肯尼亚和坦桑尼亚的实地研究中。使用该扫描仪,扫描了超过 300 KK 厚的粪便涂片,总共得到 7,780 张视场 (FOV) 图像,包含 16,990 个带注释的蠕虫卵(蛔虫:8,600 个;鞭虫:4,083 个;钩虫:3,623 个;SCH:684 个)。约 90% 的带注释卵用于训练基于深度学习的物体检测模型。从 752 张 FOV 图像的未见过的测试集中,其中包含 1,671 个手动验证的 STH 和 SCH 卵(剩余 10% 的带注释卵),我们训练的物体检测模型从 KK 的共感染 FOV 图像中提取并分类了蠕虫卵
图 1 人工智能模型正确分类为胸腔积液的 X 光片示例。A、右侧位(kVp 80,mAs 6.5)和 B、腹背位(kVp 90,mAs 6.5)X 光片投影,显示一只单侧有轻微胸腔积液征兆的狗。侧位投影(箭头)上肺部前腹侧有囊泡图案。游离液体在心脏腹侧积聚,增加了纵隔脂肪的 X 光不透明度(箭头)。这只狗在手术中被确认有左前肺叶扭转和胸腔积液
心血管疾病的发病率在世界范围内不断上升。器官芯片和人类多能干细胞 (hPSC) 技术有助于克服心脏体外模型中的一些局限性。本文介绍了一种双室单片心脏芯片装置,该装置可在单个制造步骤中实现多孔膜集成。此外,该装置包括开放式隔间,可轻松将 hPSC 衍生的心肌细胞和人成体心脏成纤维细胞共培养成几何定义的心脏微组织。该装置可以用玻璃密封或带有完全定制的 3D 打印热解碳电极的盖子可逆地关闭,从而可以对心脏微组织进行电刺激。下方的微流体通道允许对心脏微组织进行局部和动态药物给药,如对异丙肾上腺素的变时性反应所示。此外,微流体通道还可以填充人类诱导多能干细胞衍生的内皮细胞,从而允许在一个装置中共培养异型心脏细胞。总体而言,这项研究展示了一种新型心脏芯片模型,该系统将开放式顶部装置与 3D 打印碳电极系统地集成在一起,用于电起搏和心脏组织培养,同时实现主动灌注和动态药物给药。人类心脏芯片模型工程方面的进步代表着将器官芯片技术作为临床前心脏药物开发的常规方面迈出了重要一步。
发行:文部科学省记者俱乐部、科学记者俱乐部、神奈川县政府记者俱乐部、横须贺市政府记者俱乐部、青森县政府记者俱乐部、陆奥市政府记者俱乐部、高知县政府记者俱乐部、冲绳县政府记者俱乐部、名护市3家公司、鹿儿岛县16家新闻机构