摘要本文是关于估计网络物理系统(CPS)的网络弹性的估计。我们定义了两个新的弹性估计指标:k-步骤性和ℓ-对监控性。他们旨在帮助设计师在面对隐形攻击时评估和增加CPS的网络释放能力。k-步骤度量指标反映了控制器对单个植物状态变量作用的能力,至少可以处理k个功能多样的输入信号的k个不同组。ℓ-对测量性度量指示控制器可以监视具有不同功能多样的输出组的单个植物状态变量的能力。配对,指标导致CP达到(k,ℓ) - 弹性。当K和ℓ都大于一个时,CP可以吸收并适应控制输入和输出信号的控制理论攻击。我们还将参数K和ℓ与系统的可恢复性联系起来。我们定义可恢复性策略来减轻犯罪攻击的影响。我们表明,可以通过组合硬件和软件中的冗余和多样性来增强K和ℓ的值,以应用移动的目标范例。我们通过模拟和数字结果验证该方法。
抽象的网络物理系统(CPS)在我们的日常生活中变得越来越无处不在,复杂和强大。固有的好处和舒适感在其人生周期的每一步都产生了环境影响。这种影响很大,不幸的是,今天常常被忽略。由于网络物理系统往往是“不可见的”,因此需要在设计阶段的早期认识到基础架构和所需资源。在本文中,讨论了在实施的早期阶段的环境影响注意事项,并讨论了通过人地球 - 系统观点改善设计选择的机会。作者讨论了与CPS支持的系统构造,数据管理以及总体目标和功能有关的方面。通过特定的智能家庭案例,说明了对设备和数据管理的生命评估的潜力。通过明确考虑不同的配置,可以分析设计决策的环境影响。我们正在进行的研究目标是一种设计方法,以融合智能系统的效用,性能和较小的环境影响之间。
hal是一个多学科的开放访问档案,用于存款和传播科学研究文件,无论它们是否已发表。这些文件可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
在网络物理系统(CPS)的快速发展的领域中,我们面临着一场技术革命,这是由于传感,计算,通信和作用的进步所驱动的。这些系统,包括自动驾驶汽车和无人驾驶汽车等创新,不仅仅是自动化;他们重新定义了我们与世界Bogdan和Pedram(2018)互动的方式。但是,CP的真正挑战不仅是自主运作,而且要在我们生活的复杂和不确定的世界中聪明地运作。因此,类似人类的智能机器的概念是基于这样的想法:这些机器可以通过与人类紧密互动和合作的能力来提供相当大的好处。这源于以下想法:具有人类智能或认知机器的机器将不仅通过语言,而且通过各种形式的互动,无论是明显的和隐性的太阳(2020),都可以更好地与人类交流。开发人类智能机器的主要原因之一是它们成为人类有效伴侣的能力。具有类似人类特征的机器更容易理解和使用。另一个关键方面是建立人与机器之间的信任。真正的社会信任,我们在人类同胞之间感受到的那种基于共同的动机和经验。要使机器获得这种信任水平,他们需要展示内在的人类行为和动机。这包括理解和回应Sun(2006)的人类情感和动机。
机器学习方法在科学过程中可能是有价值的帮助,但是他们需要面对来自非均匀实验条件的数据的具有挑战性的环境。最近,元学习方法在多任务学习方面取得了重大进展,但它们依靠黑盒神经网络,占据高计算成本和有限的解释性。利用学习问题的结构,我们认为可以使用更简单的学习模型,并具有以学习任务为例,可以使用更简单的学习模型来实现多环境的概括。至关重要的是,我们证明该体系结构可以识别系统的物理参数,从而实现可解释的学习。我们通过将其与物理系统上的最新算法进行比较,降低了我们方法的竞争性概括性能和低计算成本,从玩具模型到复杂的,非分析系统。我们的方法的解释性用原始应用在物理参数诱导的适应性和自适应控制中进行了说明。
摘要本文介绍了系统工程框架中复杂物理系统初步设计的方法。这种方法集中在设计前任务所涉及的活动和参与者上。它专注于设计问题的建模(设计问题规范),这是一种用于指定和建模工程设计问题的形式主义。这种设计方法完成了基于模拟的分析方法,该方法主要用于物理系统的设计。尤其是我们的方法允许综合设计前架构,分析/仿真方法无法做到。从要求的文本规范开始,提出的方法构建了设计问题的正式模型,并使用约束编程解决了它。思想和概念:问题模型可重复使用的问题,问题,知识和解决方案空间的概念以及要求的正式规范以及将设计问题模型与设计系统模型区分开来的所有其他内容。电动汽车的锂离子电池设计的一个例子是本文的实际用例。
在第二次工业革命期间,电力作为一种实用且简单的方式被引入,用于向建筑物和工业等消费者传输电力。在此期间发生的电气化过程是我们日常生活中使用的电器发明的主要驱动力。这些电器的广泛使用导致能源消耗不断增加。从那时起,研究人员一直对能源优化感兴趣,以最大限度地提高设备的效率。随后发生了两次工业革命:(1)第三次革命,其特点是引入了自动化、信息技术和电子革命;(2)正在进行的第四次革命,引入了信息物理系统 (CPS)、物联网 (IoT) 和网络革命。互联网是这些革命的基础技术,为传输数据和人与设备之间的通信提供了网络基础设施。此外,电子设备的功能按照摩尔定律呈指数级增长,并具有通信、保持连接和执行复杂任务的能力。这两个因素是 CPS 和 IoT 设计和开发的基础。目前观察到联网设备数量显着增加,未来将继续增加,尤其是 IoT 和智能家居设备 [1]。据估计
允许将本工作的全部或一部分供个人或课堂使用的数字或硬副本授予,而没有费用,只要副本不是盈利或商业优势,并且副本带有此通知和首页上的完整引用。必须尊重他人拥有的这项工作的组件版权。允许用信用摘要。否则复制或重新出版以在服务器上发布或重新分配到列表,需要事先特定的许可和/或费用。请求权限从permissions@acm.org。
过去,网络攻击尚未出现在我们的世界中。控制系统的故障仅被视为机械设备故障。客户的安全很少受到黑客通过远程访问网络渠道的威胁。如今,电子控制系统容易受到不同类型的攻击。例如,汽车可以通过各种攻击媒介被黑客操纵[1]-[4]。在本文中,我们希望在恶意攻击者试图接管它时找到正确的操作员。以前,汽车、机器人等控制系统仅由现场人工操作员处理。逐渐地,控制权被授予工业自主控制系统,然后通过网络通信渠道授予远程访问网络系统。这种范式