摘要:早期阿尔茨海默病 (AD) 和额颞叶痴呆 (FTD) 具有相似的症状,这使其诊断和制定特定治疗策略变得复杂。我们的研究评估了多种特征提取技术,用于从脑电图 (EEG) 信号中识别 AD 和 FTD 生物标志物。我们开发了一种优化的机器学习架构,该架构集成了滑动窗口、特征提取和监督学习,以区分 AD 和 FTD 患者以及健康对照 (HC)。我们的模型具有 90% 的滑动窗口重叠度、SVD 熵用于特征提取和 K 最近邻 (KNN) 用于监督学习,在区分 AD 和 HC、FTD 和 HC 以及 AD 和 FTD 方面分别实现了 93% 和 91%、92.5% 和 93% 以及 91.5% 和 91% 的平均 F1 分数和准确率。特征重要性阵列是一种可解释的 AI 特征,它突出显示了有助于识别和区分 AD 和 FTD 生物标志物的脑叶。这项研究引入了一种使用 EEG 信号检测和区分 AD 和 FTD 的新框架,满足了对早期准确诊断的需求。此外,还记录了滑动窗口、多特征提取和机器学习方法对 AD/FTD 检测和区分的比较评估。
摘要非编码RNA(NCRNA)序列的准确分类对于晚期非编码基因组注释和分析是关键的,这是基因组学的基本方面,促进了对NCRNA功能和各种生物学过程中的调节机制的理解。尽管已经采用了传统的机器学习方法来区分NCRNA,但这些通常需要广泛的功能工程。最近,深度学习算法在NCRNA分类方面提供了进步。这项研究介绍了BiodeEpfuse,这是一个混合深度学习框架,该框架整合了卷积神经网络(CNN)或双向长期记忆(BILSTM)网络具有手工制作的特征,以提高精度。该框架采用了K-mer的一hot,k-mer词典的组合,以及用于输入表示的特征提取技术。提取的特征,嵌入到深网中时,可以最佳利用NCRNA序列的空间和顺序细微差别。使用来自细菌生物的基准数据集和现实世界RNA样品,我们评估了生物脱皮物的性能。结果在NCRNA分类中表现出很高的精度,强调了我们工具在应对复杂NCRNA序列数据挑战方面的鲁棒性。CNN或Bilstm与外部特征有效的预示了有希望的未来研究方向的有效融合,尤其是在完善NCRNA分类器并深化对NCRNA中的NCRNA中,对细胞过程和疾病表现。除了在细菌生物的背景下使用其原始应用外,整合到我们框架中的方法和技术还可以使生物脱发有效地在各种和更宽的领域中有效。
阿尔茨海默病 (AD) 越来越影响老年人,是 65 岁以上人群的主要杀手。不同的深度学习方法用于自动诊断,但它们也存在一些局限性。深度学习是用于检测和分类医学图像的现代方法之一,因为深度学习能够自动提取图像的特征。然而,使用深度学习准确分类医学图像仍然存在局限性,因为提取医学图像的精细边缘有时被认为是困难的,并且图像中存在一些失真。因此,本研究旨在开发一种计算机辅助脑部诊断 (CABD) 系统,该系统可以判断脑部扫描是否显示出阿尔茨海默病的迹象。该系统采用 MRI 和特征提取方法对图像进行分类。本文采用阿尔茨海默病神经影像学计划 (ADNI) 数据集,包括用于阿尔茨海默病患者识别的功能性 MRI 和正电子版本断层扫描,这些扫描是为阿尔茨海默病患者和典型个体制作的。所提出的技术利用 MRI 脑部扫描来发现和分类特征,利用直方图特征提取 (HFE) 技术与 Canny 边缘相结合来表示卷积神经网络 (CNN) 分类的输入图像。此策略跟踪图像中梯度方向的实例。实验结果为 ADNI 图像分类提供了 97.7% 的准确率。
摘要:本文的主要目的是提供有关如何创建卷积神经网络 (CNN) 以从 EEG 信号中提取特征的信息。我们的任务是了解为各种应用场景创建和微调 CNN 的主要方面。我们考虑了 EEG 信号的特征,并探索了各种信号处理和数据准备技术。这些技术包括降噪、滤波、编码、解码和降维等。此外,我们对众所周知的 CNN 架构进行了深入分析,将它们分为四个不同的组:标准实现、循环卷积、解码器架构和组合架构。本文还对这些架构进行了全面评估,涵盖了准确度指标、超参数和附录,其中包含一个表格,概述了用于从 EEG 信号中提取特征的常用 CNN 架构的参数。
非盲反卷积的目的是从鉴定获得的内核中恢复其模糊的图像。iS iSTING TEEP神经体系结构通常是基于大型地面真相图像的大型数据集建立的,并接受了监督训练。并不总是可用的,尤其是针对生物化应用,敏锐的高质量地面真相图像并不总是可用的。这严重阻碍了当前方法在实践中的适用性。在本文中,我们提出了一种新型的非盲卷曲方法,该方法利用了深度学习和经典迭代反卷积算法的力量。我们的方法结合了一个预先训练的网络,从输入图像中提取深度特征以及Itera的Richardson-Lucy反卷积步骤。随后,采用零射击优化过程来集成反浏览特征,从而产生高质量的重建图像。通过使用经典的迭代反卷积方法进行初步重构,我们可以有效地利用较小的网络来产生最终图像,从而加速重建,同时减少需求量,以减少有价值的计算资源。我们的方法证明了各种现实世界应用程序中的显着改进。
英语论文是英语学习的关键部分,反映了学生运用英语技能的整体能力。因此,对英语论文的准确评分至关重要[1]。传统的评估方法涉及教师的手动分级,这很耗时,可能无法为每个学生提供个性化评估,尤其是在面对大量学生时[2]。机器学习算法的出现提供了一种自动评分英语论文的方法。自动论文评分的机器学习算法的基本原理是使用大量的预定论文数据集来训练该算法以学习评分模式并将其应用于未知文章。将机器学习应用于自动的英语论文评分可以使评分更加客观和高效,从而节省了教师的时间和精力[3]。但是,在捕获诸如写作样式和上下文之类的主观信息时,将机器学习用于自动评分仍然存在局限性。需要进一步改进算法以说明这些主观元素。McNA-MARA [4]研究了层次分类方法在自动论文评分中的应用,并证明了该方法在论文评分领域的有效性。li [5]提出了一种使用神经网络自动中文论文评分的新模型,该模型应用BERT网络以获取文章的句子向量,然后使用两层双向双向短期内存(BI-LSTM)提取文章向量。实验结果表明,该模型的性能比其他基线方法更好。hao [6]提出了一个加权有限状态自动机系统,并利用了渐进的潜在语义分析来处理大量论文。实验结果验证了系统的有效性。本文简要介绍了用于英语论文的基于XGBoost的自动评分算法,并引入了LSTM语义模型,以从论文中提取语义评分功能,以提高算法的准确性。最后,在模拟实验中,使用五种主题赋予的论文将优化的XGBoost算法与传统的XGBoost和LSTM算法进行了比较。
大脑计算界面(BCI)是一项导致神经疾病应用程序发展的技术。BCI建立了大脑与计算机系统之间的联系,主要集中于协助,增强或恢复人类的认知和感觉 - 运动功能。BCI技术使从人脑中获得脑电图(EEG)信号。这项研究集中于分析包括Wernicke和Broca领域在内的发音方面,以进行无声的语音识别。无声的语音界面(SSI)为依赖声信号的传统语音界面提供了一种替代方案。无声的语音是指在没有听觉和可理解的声学信号的情况下传达语音的过程。本研究的主要目的是提出用于音素分类的分类器模型。输入信号经过预处理,并使用传统方法(例如MEL频率CEPSTRUM系数(MFCC),MEL频率光谱系数(MFSC)和线性预测编码(LPC)进行特征提取。最佳功能的选择是基于对主题的分类精度,并使用集成堆栈分类器实现。集成的堆叠分类器优于其他传统分类器,在Karaone数据集中的思维和说话状态达到75%的平均准确性,在14个通道EEG EEG上的思维和说话状态的平均精度为84.2%和84.09%,用于IMIVENIDECENTECTIOM EEG(FEIS)。
人类的大脑通过对客观世界的认知,形成图像和影像,这个过程也是人类最重要的信息来源,通过观察现实世界中人体各个系统的运行状态,很容易理解。随着人工智能、多媒体、计算机等新型信息技术的不断发展,图像处理应用也受到人们的青睐。图像识别技术在计算机系统的支持下,可以给人们的生产生活带来极大的便利。本文基于此背景,完成了计算机图像识别系统的设计,并通过改进图像算法完成了优化。
摘要。本文介绍了一种基于脑电图 (EEG) 的情绪识别新方法。该方法使用迁移学习从多通道脑电图信号中提取特征,然后将这些特征排列在 8×9 的图中以表示它们在头皮上的空间位置,然后我们引入一个 CNN 模型,该模型接收空间特征图并提取脑电图通道之间的空间关系并最终对情绪进行分类。首先,将脑电图信号转换为频谱图并通过预先训练的图像分类模型从脑电图频谱中获取特征向量。然后,重新排列不同通道的特征向量并将其作为 CNN 模型的输入,该模型提取空间特征或通道依赖关系作为训练的一部分。最后,CNN 输出被展平并通过密集层以在情绪类别之间进行分类。在本研究中,SEED、SEED-IV 和 SEED-V EEG 情绪数据集用于分类,我们的方法通过五倍交叉验证在 SEED 上实现了 97.09% 的最佳分类准确率,在 SEED-IV 上实现了 89.81% 的最佳分类准确率,在 SEED-V 数据集上实现了 88.23% 的最佳分类准确率。