cfh f gctgtatgcactgaatctgga 136 r actgggtacgtgtgatttcatctccccccccccccccccccccccccccccccccccccccccccccccccc 123 r acgtttttttttcgctgcctgagtc cd44 f acacgagaagaagaagagagagcaggac 135 ttatctgcagtggatcgagttc 150 r gtagcttttcctttcctatgccaaacc oct4 f gagaatttgtgttgtcctggagtgc150 r tcgttgtgtgtgcatagtgctgtcgctgtcgcgtcggctg sox2 TTCGGGTAGTGGAAAACCAG 108 R AGTAGAAATACGGCTGCACC Klf4 F ACCTACACAAAGAGTTCCCATC 136 R TGTGTTTACGGTAGTGCCTG EpCAM F CAGACAAGGACACTGAAATAACC 134 R TGTGATCTCCTTCTGAAGTGC ALDH1A3 F cttctgccttagagtctggaac 138 r tcacttctgtgtgtattcggcc abcg2 f aggtctgtgtgtggtggtcaatctcac 142 r tcctgttgcattgagtcctg nanog nanog nanog f gaaatacctcctcctcagcctcctcctccctccagc149 ggatcgggttaagggaaagag 139 r aggagacataggcgagaggggggggggggg epas1 f cccatgtctccaccttcaag 136 r aaggcttgcttcttcattccttcatctcccccccccccccccccccacacaagcaagactc146 r gggggggggtccgtccccccctccctcctcccctcct4 105 r tcttcacggaaacagggttc ptprj f caagcaggctcaggactatg 142 r ggaggtgaAatggaAtggaActgtct myo6 f acgtgctccaaagtctgtgttac12 atccatgagcttttttccccagβ-肌动蛋白f cccagcacaatgaagatcaag 136 r gactcgtcatcatactcctgcttg abcg2,atp biding cassette cassette subfimily g ement g ement 2; Aldh1a3,醛脱氢酶1家族成员A3; CFH,补体因子H; CXCR4,C-X-C基序趋化因子受体4; EPAS1,内皮PAS结构域蛋白1; Epcam,上皮细胞粘附分子; EPB41L3,红细胞膜蛋白带4.1样3; GJA1,间隙连接蛋白α1; KLF4,KLF转录因子4; Myo6,肌球蛋白VI; PTPRJ,蛋白酪氨酸磷酸酶受体类型J
美沙酮维持治疗阿片类药物依赖性母亲是护理标准。与未经治疗的阿片类药物依赖性母亲相比,美沙酮维持阿片类药物(MMOD)母亲的婴儿的结局更好。但是,与非暴露婴儿相比,MMOD母亲的婴儿与较差的结果有关。我们进行了一项试验研究,使用16个学期和近期婴儿的脐带血样本检查了基因组宽的差异DNA甲基化,MMOD和阿片类幼稚的母亲,不包括患有绒毛膜炎的婴儿。在差异> + 2,<−2和p值<0.05的差异下鉴定了152个差异甲基化的基因座。观察到了90个高甲基化基因座(59个注释基因)和62个次甲基化基因座(38个注释基因)。超甲基化和降甲基化的DNA变化涉及多种基因,途径和网络,这些基因,途径和网络可能解释了MMOD母亲婴儿中某些变化。顶级高甲基化和降压基因涉及细胞生长,神经发育,视力和异种生物代谢功能的领域。我们的数据可能解释了关键途径和基因与怀孕中美沙酮暴露中发现的新生儿结局相关的作用。对已识别途径和基因的功能研究可能会改善对机制的理解,并确定干预的领域。
hal是一个多学科的开放访问档案,用于存款和传播科学研究文件,无论它们是否已发表。这些文件可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
• 全球亚热带和温带地区干旱期的频率和长度正在增加。表观遗传对水分胁迫的反应可能是植物抵御这些难以预测的挑战的关键。实验性 DNA 去甲基化与应激因子的应用相结合是揭示表观遗传学对植物应激反应贡献的适当策略。• 在温室中,我们分析了用 5-氮杂胞苷对种子进行去甲基化和/或反复受水胁迫后,一年生地中海草本植物 Erodium cicutarium 成年植株叶片胞嘧啶甲基化的变化。我们使用亚硫酸盐 RADseq (BsRADseq) 和新报道的 E. cicutarium 参考基因组,以 2 9 2 因子设计表征甲基化变化,控制植物相关性。 • 从长期来看,仅用 5-氮杂胞苷处理会导致单个胞嘧啶的低甲基化和高甲基化,在 CG 环境中会出现显著的低甲基化。在对照条件下,干旱导致除 CHH 环境中所有环境中的甲基化减少。相反,经历反复水胁迫并用 5-氮杂胞苷处理的植物的基因组使 DNA 甲基化水平增加约 5%。• 种子去甲基化和反复干旱在整体和特定环境中的胞嘧啶甲基化方面产生了高度显著的相互作用。大多数甲基化变化发生在基因区域周围和转座因子内。这些与基因相关的差异甲基化区域的注释包括几个在应激反应中具有潜在作用的基因(例如 PAL、CDKC 和 ABCF),证实了表观遗传在分子水平上应对应激的贡献。
仅研究使用。不适用于诊断程序。©2023加利福尼亚州的太平洋生物科学(“ PACBIO”)。保留所有权利。此文档中的信息如有更改,恕不另行通知。PACBIO对本文档中的任何错误或遗漏不承担任何责任。某些通知,条款,条件和/或使用限制可能与您使用PACBIO产品和/或第三方产品有关。请参阅适用的PACBIO销售条款和条件以及PACB.com/license的适用许可条款。Pacific Biosciences,PACBIO徽标,PACBIO,Circulomics,Omniome,Smrt,Smrtbell,Iso-Seq,Seqel,Seqel,Nanobind,SBB,Revio,Revio,Onso,Apton,Apton和Kinnex是PacBio的商标。
社会昆虫在性别和种姓之间表现出极端的表型差异,即使潜在的基因组几乎相同。表观遗传过程已被提出是介导这些表型差异的可能机制。使用皇后区,男性和生殖女性工人的整个基因组纤维纤维测序,我们表征了大黄蜂炸弹式地面的性别和种姓特异性甲基。我们已经确定了可能影响性别和种姓表型差异的组蛋白修饰过程中DNA甲基化的潜在作用。我们还发现差异化甲基化基因通常显示出低水平的DNA甲基化,这可能暗示了介导转录可塑性中低甲基化基因的单独功能,这与通常参与家政功能的高度甲基化基因不同。我们还使用了同一皇后和男性的整个基因组重新测序,研究了潜在的基因组与甲基化合体之间的关系。我们发现DNA甲基化富含零折的位点。我们建议DNA甲基化可能在这些位点起到靶向诱变作用,从而通过非同义基因组中的非同义变化提供了底物。但是,我们在样品中没有看到DNA甲基化与阳性选择速率之间的任何关系。为了充分评估自适应过程中DNA甲基化的可能作用,需要使用自然人群数据进行特定设计的研究。
神经退行性疾病等(Pagiatakis等,2021)。由于医疗和公共卫生资源的显着发展,在过去的几十年中,人类预期寿命迅速增强。然而,增强的预期寿命已导致发病率更高,并且在残疾中生活了多年(Pagiatakis等,2021)。因此,有必要了解衰老过程,以便将与之相关的不良健康结果最小化。研究确定了衰老,基因组不稳定性,端粒短路,蛋白质静脉曲张等的某些标志,表观遗传改变是这些标志之一(López-Otín等人,2013年)。至少在理论上是可逆的,与衰老相关的表观遗传变化正在广泛研究以探索健康衰老的可能性(Jones等,2015)。DNA甲基化是研究最广泛的表观遗传过程(Pal&Tyler,2016年)。DNA甲基化是指在CPG二核苷酸(近鸟嘌呤近端)的胞嘧啶残基(5 MC)的第三碳上添加甲基(Martin&Fry,2018年)。通常,DNA甲基化发生在那些具有高胞嘧啶和鸟嘌呤(CG)含量的基因组区域内,即所谓的CPG岛(Martin&Fry,2018);但是,CPH(H = A,T或C)位点也可以甲基化(Lister等,2013)。DNA甲基化模式由DNA甲基转移酶(DNMT),主要是DNMT3A,DNMT3B和DNMT1(Unnikrishnan等,2018)建立。(Gopalan等,2017; Martin&Fry,2018)。在另一项研究中,Wilson等。在另一项研究中,Wilson等。虽然DNMT3A和DNMT3B是可以识别和甲基化的半甲基化和甲基化的甲基化和未甲基化的DNA的甲基甲基转移酶,但DNMT1是一种能够在半甲基化DNA上起作用的维持甲基转移酶(Okano等人,1999; un.nikrishnan and and,2018)。DNA甲基化水平可以受到内在(遗传背景)和外在因素(例如吸烟,饮食,暴露于空气污染,某些化学物质等)的影响。除了这些因素外,还报道了衰老影响DNA甲基化水平(Gopalan等,2017)。衰老和寿命直接与人类和其他几种生物体的DNA甲基化和表观遗传改变有关,总体趋势会增加全球低甲基化和随着年龄的高甲基化的区域(Johnson等,2012)。根据基因组低甲基化假设,全局DNA甲基化随着年龄的增长而降低,从而导致基因组稳定性降低和基因表达异常(Unnikrishnan等,2018)。尽管随着年龄的基因组低甲基化理论仍然很流行,但采用现代定量技术的最新研究对其进行了挑战(Lister等,2013; Unnikrishnan等,2018)。在探索全球DNA甲基化与衰老之间关系的最早尝试之一中,Vanyushin等人。(1973)研究了从1到28个月之间从雄性白化大鼠的不同组织中提取的5 mc含量的变化。在具有里程碑意义的论文中,威尔逊和琼斯(Wilson and Jones,1983)报告说,从小鼠,仓鼠和人类的皮肤细胞中提取的DNA中,人口倍增(复制衰老)的含量降低,人口加倍(复制衰老)的增加。他们报告说,随着年龄的增长,从大脑,心脏和脾脏组织中提取的DNA的5 mC含量降低。然而,从肝脏,肺和肾脏组织提取的DNA的5个MC含量没有变化(Vanyushin等,1973)。(1987)报道了DNA
衰老通常被认为是随机细胞损伤的结果,可以使用DNA甲基化轮廓准确地估计,这是泛组织表观遗传钟的基础。在这里,我们使用了来自哺乳动物甲基化财团的11,754个甲基化阵列,证明了普遍的泛哺乳动物时钟的发展,该甲基化阵列包括185种哺乳动物物种的59种组织类型。这些预测模型以高精度估算哺乳动物组织年龄(r> 0.96)。年龄偏差与人类死亡率风险,小鼠体形轴突变和热量限制相关。我们鉴定出具有甲基化水平的特定细胞,这些甲基化水平随着许多物种而随着年龄的增长而变化。这些位点高度富含多孔抑制性复合物2结合位置,几乎与哺乳动物发育,癌症,肥胖和寿命有关。我们的发现提供了新的证据,表明衰老在进化上是保守的,并与所有哺乳动物的发育过程交织在一起。
图1:水百合和实验工作流程中种子结构的概述。a)自摄取的N. thermarum(Nt)和Dimorpha(ND)的年轻种子,以及两个物种之间的相互交叉。在所有种子中,年轻的胚胎都被细胞,二倍体胚乳包围,而二倍体胚乳又被母体营养储存组织(Perisperm)所包围。b)对于这项研究,生成了三个主要数据集来定义种子特征。全基因组DNA甲基化的特征是胚胎和成熟种子和叶片组织分离的胚胎和胚乳。全基因组DNA甲基化的特征是幼虫的年轻胚乳,来自嗜热猪笼草和二甲状腺菌的倒数杂交种子。RNA-seq数据,用于从相互交叉的种子,以及自由的h. thermarum和Dimorpha种子中的幼植物中收集的。
4 转化神经科学项目,宾夕法尼亚州匹兹堡 如有疑问或通信,请联系 Brandon C. McKinney, MD, PhD。邮寄地址:生物医学科学大厦,W-1658 室 3811 O'Hara Street, Pittsburgh, PA 15213-2593 特快专递地址:生物医学科学大厦,W-1658 室 Lothrop and Terrace Streets, Pittsburgh, PA 15213-2593