1 加德满都大学理学院数学系,杜利凯尔,尼泊尔 2 加德满都大学工程学院计算机科学与工程系,杜利凯尔,尼泊尔 3 洛夫利专业大学计算机科学与工程学院,帕格瓦拉,印度 4 萨坦·本·阿卜杜勒阿齐兹王子大学计算机工程与科学学院计算机科学系,沙特阿拉伯 5 昌迪加尔大学计算机科学与工程系,旁遮普,印度 电子邮件:harish.bhandari@ku.edu.np (HCB);yagya.pandeya@ku.edu.np (YRP);jhakn@ku.edu.np (KJ);sudan.jha@ku.edu.np (SJ);s.alisher@psau.edu.sa (SA) *通讯作者 摘要 — 脑电图 (EEG) 信号广泛应用于情绪识别、情绪分析、疾病分类、睡眠障碍识别和疲劳检测。最近的研究突出了利用脑电信号分析神经系统疾病的积极探索。各种机器学习和深度学习技术,使用基于特征和欧几里得的方法,已被用于分析这些脑电信号。然而,非欧几里得方法已被证明在脑电信号研究中比欧几里得方法更有效。这种优势可能源于脑电信号的非线性和动态特性、大脑区域之间复杂的相互作用以及对常见脑电信号噪声的适应性。不幸的是,由于数据集不足、源代码不可用和图形表示的复杂性等限制,对脑电信号的图形表示的研究有限。因此,我们旨在对使用非欧几里得方法进行脑电信号分析的各种图形表示技术、图神经网络、现有方法和可用资源进行调查。此外,基于可视性图的方法已应用于单通道脑电信号,而图神经网络已被证明在多通道脑电信号分析中具有良好的结果。因此,调查得出结论,非欧几里得方法使用图形来映射大脑结构,而不是欧几里得结构。此外,在多通道脑电信号和图神经网络中加入可视性图将证明非欧几里得方法在脑电信号分析中的稳健性。关键词——脑电信号、图形表示、图神经网络、智能处理、深度分析
以下论文涉及将脑电图 (EEG) 与机械臂形式的执行器相结合的系统的开发。EEG 是一种通过电极测量大脑活动的方法,经常用于脑机交互领域。除了开发 3D 打印机械臂的设计和控制外,我们的工作还包括通过蓝牙在 EEG 测量设备和执行器之间建立数据传输,以及实时对 EEG 信号进行分类和分析。该系统的设计使得机械臂在用户高度集中时握紧拳头,在注意力水平较低时放松为张开的手掌。结果显示了一个工作系统,它通过根据用户的注意力水平测量和正确处理 EEG 信号来控制机械臂。该系统对假肢和脑机交互领域的进一步研究很有用。系统准确性的一个可能改进是使用两个以上的电极来测量大脑活动,并减少由于脑电图信号对肌肉活动的敏感性而产生的噪音。
摘要:脑电图 (EEG) 信号包含有关大脑状态的信息,因为它们反映了大脑的功能。然而,手动解释 EEG 信号既繁琐又耗时。因此,需要使用机器学习方法提出自动 EEG 翻译模型。在本研究中,我们提出了一种创新方法,以实现高分类性能和可解释的结果。我们引入了基于通道的变换、通道模式 (ChannelPat)、t 算法和 Lobish(一种符号语言)。通过使用基于通道的变换,EEG 信号使用通道的索引进行编码。所提出的 ChannelPat 特征提取器对两个通道之间的转换进行编码,并用作基于直方图的特征提取器。采用迭代邻域分量分析 (INCA) 特征选择器来选择最具信息量的特征,并将所选特征输入到新的集成 k 最近邻 (tkNN) 分类器中。为了评估所提出的基于通道的 EEG 语言检测模型的分类能力,收集了一个包含阿拉伯语和土耳其语的新 EEG 语言数据集。此外,还引入了 Lobish,以便从所提出的 EEG 语言检测模型中获得可解释的结果。所提出的基于通道的特征工程模型被应用于收集的 EEG 语言数据集,实现了 98.59% 的分类准确率。Lobish 从大脑皮层提取有意义的信息以进行语言检测。
脑电图 (EEG) 是一种非侵入性工具,通过将电极放置在人体头皮上来测量大脑活动,从而检测神经元放电电压。虽然 EEG 技术存在信噪比差和仅捕获表面大脑活动等局限性,但它仍然是诊断癫痫和睡眠障碍等疾病的可靠方法 [ 1 ]。自动编码器 [ 2 ] 是一类特殊的神经网络,用作编码器-解码器对。编码器通过逐步减少各层的神经元数量,最终达到瓶颈层,将输入数据压缩为压缩表示,称为潜在空间。相反,解码器通过逐渐增加后续层中的神经元数量从这种压缩形式重建输入数据。这种压缩和重建过程使网络能够有效地捕获输入数据的显着特征。卷积变分自动编码器 (CVAE) [ 3 , 4 ] 通过合并卷积层扩展了此框架,使其特别适合处理图像数据。与标准自动编码器不同,CVAE 生成概率潜在空间。这种概率方法有助于学习稳健的特征,并增强模型生成类似于训练数据的新数据实例的能力。利用卷积层,CVAE 可以利用数据中的空间层次结构,从而增强其分析和重建图像数据中固有的复杂模式和纹理的能力。因此,CVAE 在要求详细
摘要 - 借助脑电图驱动的机械臂,意念控制假肢的梦想正在成为现实。这些非凡的设备将思维语言转化为身体动作。想象一下戴上舒适的脑电图耳机,它可以检测到运动过程中大脑产生的微妙脑电波。你的想法就像一个秘密代码,头带会拾取这些信号,并通过软件界面进行处理,然后传送到微控制器。这个界面会对大脑活动进行分类,以找到你的命令,这些命令通过充当机械臂大脑的微型电极发送到计算机。这会将你的想法转化为手臂电机的指令,电机根据收到的脑电图命令执行运动。考虑到预算和机械部件的可用性,机械臂应尽可能接近自然手臂的动作。但最终目标仍然很明确:创造一个感觉像额外肢体一样自然且易于使用的机械臂。关键词 - 机械臂、Raspberry Pi、机器学习、脑电图传感器
从脑电信号进行语音解码是一项具有挑战性的任务,其中大脑活动被建模以估计声学刺激的显著特征。我们提出了 FESDE,一种从脑电信号进行完全端到端语音解码的新颖框架。我们的方法旨在根据脑电信号直接重建所听语音波形,其中不需要中间声学特征处理步骤。所提出的方法由脑电模块、语音模块和连接器组成。脑电模块学习更好地表示脑电信号,而语音模块从模型表示中生成语音波形。连接器学习连接脑电和语音的潜在空间分布。所提出的框架既简单又高效,允许单步推理,并且在客观指标上优于以前的工作。进行了细粒度的音素分析以揭示语音解码的模型特征。源代码可在此处获取:github.com/lee-jhwn/fesde。索引词:语音解码、语音合成、脑电图、神经活动、脑信号
必须注意,这些方程是强烈的非线性。因此,与本示例相比,使用更细的网格或使用更高的元素顺序(尤其是在这样的完整3D模型中),以获取有关感兴趣的时间间隔具有一定程度可靠性的结果。这对于解决Ginzburg – Landau方程尤其重要,该方程描述了本质上混乱的现象。它们对初始值的扰动高度敏感,并且在时间依赖性解决方案过程中与数值错误相似。我们建议将四阶Hermite元素用于金茨堡 - 兰道方程。
摘要:近几十年来,许多不同的政府和非政府组织将测谎用于各种目的,包括确保犯罪供词的真实性。因此,这种诊断是用测谎仪来评估的。然而,测谎仪有局限性,需要更可靠。这项研究介绍了一种使用脑电图 (EEG) 信号检测谎言的新模型。为实现这一目标,我们创建了一个包含 20 名研究参与者的 EEG 数据库。本研究还使用六层图卷积网络和 2 型模糊 (TF-2) 集进行特征选择/提取和自动分类。分类结果表明,所提出的深度模型可以有效区分真话和谎言。因此,即使在嘈杂的环境中 (SNR = 0 dB),分类准确率仍保持在 90% 以上。所提出的策略优于当前的研究和算法。其卓越的性能使其适用于广泛的实际应用。
摘要 – 本文提出了一种用于 EEG 信号记录的 4 通道模拟前端 (AFE) 电路。对于 EEG 记录系统,AFE 可以处理各种传感器输入,具有高输入阻抗、可调增益、低噪声和宽带宽。缓冲器或电流-电压转换器块 (BCV) 可设置为缓冲器或电流-电压转换器电路,位于 AFE 的电极和主放大器级之间,以实现高输入阻抗并与传感器信号类型配合使用。斩波电容耦合仪表放大器 (CCIA) 位于 BCV 之后,作为 AFE 的主放大器级,以降低输入参考噪声并平衡整个 AFE 系统的阻抗。可编程增益放大器 (PGA) 是 AFE 的第三级,允许调整 AFE 的总增益。建议的 AFE 工作频率范围为 0.5 Hz 至 2 kHz,输入阻抗大于 2 T Ω,采用 180nm CMOS 工艺构建和仿真。AFE 具有最低 100 dB CMRR 和 1.8 µVrms 的低输入参考噪声,可实现低噪声效率。该设计采用了 BCV 等新功能来增强输入多样性,与之前的研究相比,IRN 和 CMRR 系数表现出显着增强。可以使用该 AFE 系统获取 EEG 信号,这对于检测癫痫和癫痫发作非常有用。
脑机接口 (BCI) 是一个研究脑电图信号以增进我们对人类大脑理解的研究领域。BCI 的应用不仅限于脑电波的研究,还包括其应用。对车辆驾驶员特定情绪的研究有限,且尚未得到广泛探索。本研究使用脑电图信号对驾驶员的情绪进行分类。本研究旨在通过分析脑电图信号来研究驾驶模拟车辆时的情绪分类(惊讶、放松/中立、专注、恐惧和紧张)。实验在模拟环境中以两种条件进行,即自动驾驶和手动驾驶。在自动驾驶下,车辆控制被禁用。在手动驾驶下,受试者能够控制转向角、加速度和制动踏板。在实验过程中,受试者的脑电图数据被记录下来,然后进行分析。