摘要 — 了解好奇心背后的神经生理机制并因此能够识别一个人的好奇心水平,将为神经科学、心理学和计算机科学等众多领域的研究人员和设计师提供有用信息。揭示好奇心的神经相关性的第一步是在好奇状态下收集神经生理信号,以便开发信号处理和机器学习 (ML) 工具来识别好奇状态和非好奇状态。因此,我们进行了一项实验,其中我们使用脑电图 (EEG) 测量参与者在被诱导进入好奇状态时的大脑活动,使用琐事问答链。我们使用两种 ML 算法,即滤波器组公共空间模式 (FBCSP) 与线性判别算法 (LDA) 相结合,以及滤波器组切线空间分类器 (FBTSC),以将好奇的 EEG 信号与非好奇的 EEG 信号进行分类。总体结果表明,两种算法在 3 到 5 秒的时间窗口内均获得了更好的性能,表明最佳时间窗口长度为 4 秒(FBTSC 的分类准确率为 63.09%,FBCSP+LDA 的分类准确率为 60.93%)可用于基于 EEG 信号的好奇心状态估计。索引术语 — 好奇心 - 心理状态 - 学习 - 脑电图 - 被动脑机接口
主要关键词