当尺寸减小到 0.6 μm 时,微处理器的速度可以提高到 100 MHz 或更高 [32]。在制造过程中必须监测 CD 和其他尺寸。光学显微镜、扫描电子显微镜和各种形式的扫描探针显微镜是用于亚微米计量的主要显微镜技术。光学显微镜无疑是这三种显微镜中最古老的一种,已存在 300 多年。在此期间,光学显微镜的方法已经相当成熟。但是,即使有这些时间和研究致力于开发这项技术,光学亚微米计量仍然有局限性 [72]。这些是光的物理基础属性。一旦认识到这些限制,人们就认为电子显微镜将成为亚微米计量的首选计量工具。不幸的是,
采用该工艺已生产出多片复合板,每片包含5到10个间距,间距范围为0.5 μm到50 μm。对于每一问题,从板上剪下尺寸为9 mm x 9 mm的单个样品,并将其侧面安装在钢制支架上进行金相抛光。通常在抛光过程中,软材料的去除速度比硬材料快,但扫描隧道显微镜 (STM)、原子力显微镜 (AFM) 和触针轮廓仪的图像都显示,抛光后,SRM 的金线突出镍表面约 30 nm(图 3)。我们推测,热处理可能形成了硬质金镍合金,或者由于抛光中的化学机械效应,镍的去除速度比金的去除速度快。
本发明涉及一种装置,通过该装置,物体通过电子束和影响电子流的静电场或电磁场(电子透镜)以放大的比例成像。根据本发明,多个电子透镜影响电子束,并一起以显微镜或望远镜的方式实现更高的放大率。如前所述,电磁电子透镜和带负电的静电电子透镜相当于光学中的会聚透镜,而带正电的静电电子透镜相当于发散透镜。因此,通过组合这些透镜,可以为电子束模拟光学中利用会聚或发散光束的任何已知装置。此外,还可以以这种方式构建直接使用或反射后使用电子束的显微镜或望远镜。通过以显微镜或望远镜的方式组合多个透镜,可以获得特别高的图像放大倍数。使用电子束具有特别大的优势,
在当今技术驱动的社会中,许多重要的电子、磁性和光子器件的生产规模不断缩小。为了最大限度地提高元件密度并进一步减小尺寸,这些器件也被制造成多层、部分金属化的结构。一个众所周知的例子是微电子器件/集成电路,其结构可以有一层到五层或更多层,厚度可能只有 2-10 微米(图 1)。在该器件的各个层中,重要特征的尺寸范围可以从大约 100 微米到数十纳米。这种材料、厚度和分辨率超出了传统光学显微镜的范围,但对材料科学、微电子学和新兴的纳米科学界来说至关重要。