静电储能电容器是电力电子器件必不可少的无源元件,由于电介质陶瓷能够在 > 100 ˚C 的温度下更可靠地工作,因此优先选择电介质陶瓷而不是聚合物。大多数工作集中在非线性电介质组合物上,其中极化 (P)/电位移 (D) 和最大场 (E max ) 经过优化,以提供能量密度值 6 ≤ U ≤ 21 J cm − 3 。然而,在每种情况下,P 的饱和 (dP/dE = 0,AFE) 或“部分”饱和 (dP/dE → 0,RFE) 都会限制在击穿前可以达到的 U 值。通过设计高介电常数准线性电介质 (QLD) 行为,dP/dE 保持恒定直至超高 E max ,可以进一步改善 U 相对于弛豫器 (RFE) 和反铁电体 (AFE) 的程度。 QLD 多层电容器原型的介电层由 0.88NaNb 0.9 Ta 0.1 O 3 - 0.10SrTiO 3 -0.02La(Mg 1/2 Ti 1/2 )O 3 组成,室温下 U ≈ 43.5 J cm − 3 ,支持极大的 E max ≈ 280 MV m − 1 ,对于基于粉末流延技术的设备,这两项性能均超过了当前最先进的水平两倍。重要的是,QLD 电容器在高达 200 ˚ C 的温度下 U ( ≈ 15 J cm − 3 ) 变化很小,并且具有强大的抗循环降解能力,为可持续技术的开发提供了一种有前途的新方法。
摘要。虽然世界人口每天都在增加,但环境问题正达到无法忽视的水平。在许多领域正在采取环保步骤,政府正在采取制裁。它旨在减少化石燃料的使用作为运输行业的环境步骤。增加使用电动汽车将在实现这一目标方面取得重大进展。电池通常用于将能源存储在电动汽车中。但是,除了重量问题和电池电源密度不足之外,它们还缺点,例如是由环境有害的材料产生的。在这种情况下,正在研究新的储能技术。其中之一是“超级电容器”技术。本文是一篇评论文章,研究了超级电容器的几个方面。
由无源元件组成的电路元件对于实现高能量和功率密度具有重要意义,并且电路的研究结果接近准确。本文阐明了在不同应用中实现高电导率、电感和电容值的可能方法,并讨论了它们的组合。主要目标是获得高电感、电容和电导值。超级电容器是一种适用于脉冲功率应用的脉冲装置,其技术已在各种应用中得到充分认可。然而,超级电感的概念很新,它可以为大量应用开辟可能性。本文旨在通过对超级电容器和超导体超级电感的分析方法,简要介绍和提供有关实现超级电感的可能性的信息,概述相对磁导率和电感值、优点和应用。