运动图像(MI)允许设计自定进度的大脑 - 计算机界面(BCIS),该界面有可能提供直观且连续的相互作用。但是,具有三个以上命令的非侵入性MI基于BCI的实施仍然是一项困难的任务。首先,解码不同动作的MIS数量受到在相应来源之间保持足够间距的限制,因为近区域的脑电图(EEG)活性可能会加起来。第二,脑电图产生了大脑活动的相当嘈杂的图像,这会导致分类性能差。在这里,我们提出了一种解决方案,通过使用合并的MIS(即同时涉及2个或更多身体部位的错误)来解决可识别的运动活动的局限性。,我们提出了公共空间模式(CSP)算法的两种新的多标记用途,以优化信噪比,即MC2CMI和MC2SMI方法。,我们在8级的脑电图实验中记录了来自七个健康受试者的脑电图信号,包括剩余条件和所有可能的组合使用左手,右手和脚。所提出的多标记方法将原始的8级问题转换为一组三个二进制问题,以促进使用CSP算法。在MC2CMI方法的情况下,每个二进制问题组在一个类别中共同参与了三个选定的身体部位之一,而其余的不参与相同身体部位的MIS则在第二类中分组在一起。以这种方式,对于每个二进制问题,CSP算法都会产生特征,以确定特定的身体部分是否从事任务。最后,通过应用8级线性判别分析,将三组功能合并在一起,以预测用户意图。MC2SMI方法非常相似,唯一的区别是,在训练阶段考虑的任何组合MIS,这大大加速了校准时间。对于所有受试者,MC2CMI和MC2SMI方法的精度都比经典的配对(PW)和One-Vs.-All(OVA)方法更高。我们的结果表明,当正确调制大脑活动时,多标签方法代表了一个非常有趣的解决方案,可以增加命令数量,从而提供更好的相互作用。
摘要。大量能源消耗吸引了利用可再生能源的关注,其中最重要的是在炎热气候中的太阳能应用,以满足冷却和功率的需求。本研究的新颖性在于在弹出器冷却循环中将瞬态自我分析应用于两个喷射器和两个蒸发器。Furthermore, the study uses solar data specific to Tehran in Iran.第三,通过吸收冷凝器热部位的废热,热电发电机系统提供了运行泵送和电气控制系统所需的能量,从而创建了一个完全自主的系统。Thermodynamic model have been designed using EES software.桑迪亚国家实验室(SNL)和国家可再生能源实验室(NERL)的结果验证了抛物线槽太阳能模型。The comparison with the experimental data collected by SNL during the LS-2 tests on the AZTRAK platform has shown good agreement.Weather conditions were analyzed as transients using Meteonorm software.The results show that the solar system produced the most heat in June and the least in December, with 816 kW and 262.3 kW, respectively.Additionally, production power and cooling in June are 5.9 kW and 86 kW, and in December: 2.7 kW and 28 kW.Regarding exergy destruction percentages, the solar collector has 86% and the storage tank has 6.5%.
然后,本文将使用多个阶段的涡轮机提出一个创新的冷冻冷却概念,该概念基于相同的工业涡轮增压器技术,可以在20-30 Kelvin温度范围内提供约1 kW的冷却能力(或在65 K时为5-6 kW),足以冷却10 mW的风力涡轮机。将来的其他版本可能在4 K处运行。它基于Air Liquide在成熟的反向涡轮增压涡轮增压 - 布雷顿制冷技术方面的丰富经验(从国际空间站,HTS地面应用于LNG船舶运营商)和大型科学工具(Cern-LHC,Iter,Iter,slac,slac等)。
免责声明:请注意,虽然已通过EMR和解为适当的谨慎准备,而限制了低碳合同公司,EMR和解有限和低碳合同公司并不代表任何代表或明示或暗示的任何代表或明示或隐含的代表,但与此文件中所包含的任何限制合同有关,并不应限制该文件,并且均不适用于EMR的限制,并且均不适用于EMR的合同。依靠它采取的信息或行动。
摘要。高温超导体(HTS)非常有吸引力的高效和高能量密度功率设备。它们与需要轻型和紧凑型机器(例如风力发电)的应用特别相关。在这种情况下,为了确保超导器机器的正确设计及其在电力系统中的可靠操作,那么开发可以准确包含其物理功能但也可以正确描述其与系统的相互作用的模型很重要。为了实现这样一个目标,一种方法是共同模拟。这种数值技术可以通过有限元模型(FEM)带来机器的细几何和物理细节,同时处理整个系统的操作,该系统包含了机器,以及由外部电路代表的电网的子集。当前工作的目的是在涉及超导组件时使用这种数值技术。在这里,提出了一个案例研究,该案例研究涉及通过整流器及其相关滤波器与直流电流(DC)网络耦合到直流电流(DC)网络的15 MW杂交超导同步发电机(HTS转子和常规定子)。与风能应用有关的案例研究允许在使用与HTS机器的共同模拟时抓住技术问题。发电机的FEM是在商用软件COMSOL多物理学中完成的,该商品通过内置功能模拟单元(FMU)与电路模拟器Simulink进行交互。因此,它是在本研究中,引入了最新版本的最新版本J-与均化技术结合使用的配方,与T -A公式相比,计算时间更快。分布式变量和全局变量,例如前者和电压,电流,电磁扭矩以及后者的功率质量的电流密度,磁通量密度和局部损失,并进行了比较。这个想法是在计算速度,准确性和数值稳定性的标准下找到最适合的组合FEM电路。
Crazyflie 2.1 无刷套件是一款多功能开源飞行开发平台,重量仅为 32 克,可握在手掌中。无刷电机可提高灵活性并增强有效载荷能力。它配备了低延迟无线电和蓝牙 LE,允许使用各种控制方法,包括脚本和手动选项。定制设计的低转速螺旋桨可提供令人愉悦的噪音和高效率。
HAL 是一个多学科开放存取档案库,用于存放和传播科学研究文献,无论这些文献是否已出版。这些文献可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
不同可再生能源技术的发展已显示出它们在限制环境危机和满足未来需求方面的能力。近年来,人们做出了许多努力来生产混合系统,这些系统致力于将可再生能源系统与热电发电机 (TEG) 相结合,以提高能源效率。这篇评论试图讨论和总结将 TEG 与不同的可再生能源 (太阳能、燃料电池、生物质) 混合的不同配置,这些配置是实现这些混合所用的概念和方法的基础。这篇评论将提供有关这种混合类型的必要信息,并因其有希望的结果而鼓励未来的研究。© 2022 作者。由 Elsevier Ltd. 出版。这是一篇根据 CC BY 许可开放获取的文章 ( http://creativecommons.org/licenses/by/4.0/ )。
•FERC,NERC和地区实体人员报告2023年10月:2022年12月在冬季风暴Elliott期间对散装系统运营进行调查。[在线]。可用:https://www.ferc.gov/news-events/news/ferc-news/ferc-nerc-release-final-report-report-leston-winter-winter-storm-storm-elliott•冬季风暴Elliott Elliott活动分析和建议报告。[在线]。Available: https://pjm.com/-/media/library/reports-notices/special-reports/2023/20230717-winter-storm-elliott-event-analysis-and-recommendation-report.ashx • FERC-NERC-reginal entity staff report: The February 2021 cold weather outages in Texas and the south-central united states.[在线]。可用:https://www.ferc.gov/media/february-2021-cold-weather-weather-----texas-texas-and-south-central----------------------------------------••报告西南寒冷天气期间2月1-5日寒冷天气期间的停机和削减活动[在线]。可用:https://www.ferc.gov/sites/default/files/2020-04/08-16-11-11-report.pdf•2019 FERC和NERC员工报告:美国中南部的美国中南部寒冷[在线]。可用:https://www.nerc.com/pa/rrm/ea/documents/south_central_cold_weather_weather_event_ferc-nerc-report_20190718.pdf•“ gas Malfunction”。[在线]可用:https://www.ucsusa.org/sites/default/files/2024-01/gas%20malfunction_brief_1.8.pdf•2021年2月2021年2月的时间表和事件Texas Electric Grid Blackouts [在线]。可用:https://energy.utexas.edu/sites/default/files/utaustin%20%282021%29%29%20EventsFebruany2021Texasblackout%2020210714.pdf
1 Los Angeles, City of Intermountain Millard 1 8.11% 820.0 900.0 900.0 ST BIT 1986 2 Los Angeles, City of Intermountain Millard 2 8.11% 820.0 900.0 900.0 ST BIT 1987 3 PacifiCorp Huntington Emery 1 5.12% 517.5 450.0 450.0 ST BIT 1977 4 Deseret Gen. & Tran.Coop。Park Red Hills Iron 1 0.79% 80.0 80.0 80.0 PV SOL 2015 26 Dominion Renewable Energy Enterprise Iron ENTS1 0.79% 80.0 80.0 80.0 PV SOL 2016 27 Dominion Renewable Energy Escalante I Beaver ESCS1 0.79% 80.0 80.0 80.0 PV SOL 2016 28 Dominion Renewable Energy Escalante II Beaver ESCS2 0.79% 80.0 80.0 80.0 PV SOL 2016 29 DOMINION可再生能源Escalante III Beaver Esc3 0.79%80.0 80.0 80.0 80.0 80.0 PV SOL 2016 30 DOMINION RENION RENEWABLE ENERION ENERGION ENTRABLE IROINR ICOR IROIN SPRINGS IS 0.79%80.0 80.0 80.0 80.0 80.0 80.0 PV SOL 2016 PV SOL 2016 31 DOIMNION RENEWABLE ENEMION RENEWABL 32 Three Peaks Power LLC Three Peaks Iron TPP 0.79% 80.0 80.0 80.0 PV SOL 2016 33 Sigard Solar Sigurd Solar Sevier SGSOL 0.79% 80.0 80.0 80.0 PV SOL 2020 34 AES Distributed Energy Clover Creek Juab CLVR 0.79% 80.0 80.0 80.0 PV SOL 2021 35 Greenbacker Renew.能量石墨I碳394 0.79%80.0 80.0 80.0 PV SOL 2022 36 Steel Solar,LLC钢盒Elder SS8 0.79%80.0 80.0 80.0 80.0 80.0 PV SOL 2024 37 Elektron Solar,LLC Elektron tueele Elkele Elkele Elks 0.79%80.0.0.0.0.0.0.0.0 80.0 sol 202224 38 38 38 38 38 38 38 38 Elder RS 0.79%80.0 80.0 80.0 PV SOL 2024 39马蹄太阳能,LLC马蹄太阳能Tooele HSS 0.74%75.0 75.0 75.0 75.0 75.0 PV SOL 2024 40犹他州协会。mun。Power Sys。mun。Power Sys。NEBO发电厂犹他州GT1 0.64%65.0 65.0 65.0 65.0 CT NG 2004 45 AES分布式能量Latigo latigo san Juan ltigo 0.61%62.1 62.1 62.1 62.1 62.1 wnd WND 2016Bonanza Uintah 1 4.94% 499.5 458.0 458.0 ST BIT 1986 5 PacifiCorp Huntington Emery 2 4.93% 498.0 459.0 459.0 ST BIT 1974 6 PacifiCorp Hunter Emery 3 4.90% 495.6 471.0 471.0 ST BIT 1983 7 PacifiCorp Hunter Emery 1 4.83% 488.3 446.0 446.0 ST BIT 1978 8 PacifiCorp Hunter Emery 2 4.83% 488.3 446.0 446.0 ST BIT 1980 9 PacifiCorp Lakeside Utah ST2 2.81% 284.4 273.0 281.0 CA NG 2014 10 PacifiCorp Currant Creek Juab ST1 2.72% 274.5 254.0 269.0 CA NG 2006 11 PacifiCorp Lakeside Utah ST01 2.23% 225.9 209.0 215.0 CA NG 2007 12 First Wind O&M Milford Wind Corridor Millard 1 2.01% 203.5 203.5 203.5 WT WND 2009 13 PacifiCorp Lakeside Utah CT21 1.83% 185.4 178.0 183.2 CT NG 2014 14 PacifiCorp Lakeside Utah CT22 1.83% 185.4 178.0 183.2 CT NG 2014 15 PacifiCorp Lakeside Utah CT01 1.81% 182.7 169.0 174.0 CT NG 2007 16 PacifiCorp Lakeside Utah CT02 1.81% 182.7 169.0 174.0 CT NG 2007 17 Greenbacker Renewable Energy Corp. Appaloosa I Iron AS1A 1.98% 200.0 200.0 200.0 PV SOL 2024 18 PacifiCorp Currant Creek Juab CT1A 1.45% 146.2 135.0 143.0 CT NG 2005 19 PacifiCorp Currant Creek Juab CT1B 1.45% 146.2 135.0 143.0 CT NG 2005 20 Cove Mountain Solar Cove Mountain 2 Iron GEN01 1.21% 122.0 122.0 122.0 PV SOL 2020 21 PacifiCorp Gadsby Salt Lake 3 1.12% 113.6 104.5 104.5 ST NG 1955 22 Milford Wind LLC Milford Wind Corridor Millard 1 1.01% 102.0 102.0 102.0 WT WND 2011 23 Hunter Solar Hunter Solar Emery HUSOL 0.99% 100.0 100.0 100.0 PV SOL 2020 24 Milford Solar I Milford Solar 1 Beaver MS1 0.98% 99.0 99.0 99.0 PV SOL 2020 25 Utah Red山丘更新。。 0.68%