•通过创建具有成本效益的医疗设备原型,IPN旨在将收益扩展到更多的低收入患者•该设备减少了帕金森氏病的特征症状,从而提高了患者的生活质量和功能质量。•相同的技术还可以帮助治疗癫痫,慢性疼痛和某些精神疾病。政治学院(IPN)正在开发超薄电极,以增强大脑刺激,以增强患有帕金森氏病的个体的生活质量和功能性,这是一种以震颤,僵化,速度,慢速运动和步态干扰等症状标记的神经退行性疾病。ChristopherRenéTorresSan Miguel博士,Escuela SuperiordeIngenieríaMecánicayEléctrica(Esime)Zacatenco单位的项目负责人和研究员,强调了该疗法使用的当前电极的高成本,范围为600,000至700,000 PESO,限制了治疗的范围。他指出,在私立医院,健康保险通常覆盖植入剂成本的70%。认识到这一障碍,IPN旨在产生负担得起的电极,从而使更多的低收入患者可以使用治疗。这些设备也有望解决癫痫,慢性疼痛和精神疾病。为了推进该项目,机械工程专家,Sistema nacional de Investigadores(SNII)的成员Torres博士与Escuela Superior De Medicina(ESM)的神经外科医生和校友FiacroJiménezPonce博士合作。Jiménez博士在深脑刺激电极植入方面贡献了他的专业知识,为设备开发提供了关键的指导。托雷斯博士解释说,深脑刺激的目标是负责控制震颤,僵化,运动缓慢和步态问题等症状的区域,并协调
摘要:发光电化学细胞(LEC)是完全解决方案处理的照明应用的有前途的候选者,因为它们可以组成单个活性材料层和空气稳定电极。由于电气双层(EDL)的原位形成,通常认为它们的性能独立于电极材料选择,但我们在概念上和实验上证明了这种理解需要修改。具体来说,观察到激子的生成区域受电极工作函数的影响。我们通过提出促进EDL中的离子浓度合理化了这一发现,取决于电极工作函数与各个半导体轨道之间的偏移,这反过来又影响了用于电化学垃圾的离子数量,从而影响了exociton生成区域。此外,我们研究了电极选择对表面等离子体极化子激子损失的影响,并讨论了腔对激子密度的影响。我们通过证明我们可以通过考虑这些电极依赖性效应的光学模型来复制测得的亮度瞬变来得出结论。因此,考虑到电极材料,主动材料厚度及其共同组成,我们的发现提供了合理的设计标准,以实现最佳的LEC性能。关键字:发光电化学电池,电动双层,激子产生曲线,电极功能,表面等离子体偏振子,光学建模■简介
摘要:激光铭刻的石墨烯(LIG)是一种用于微电子应用的新兴材料,用于开发超级电容器,软执行器,互动发电机和传感器。制造技术很简单,但是文献中没有很好地记录了LIG质量的批处理变化。在这项研究中,我们进行了实验,以表征在电化学传感中应用的LIG电极制造中的批处理变化。在聚酰亚胺膜上使用CO 2激光系统合成了许多批次36个LIG电极。使用角膜测量法,立体显微镜,开路电位计和环状伏安法进行了LIG材料。疏水性和电化学筛选(循环伏安法)表明使用商业参考和反电极时,LIG电极批处理变化小于5%。金属化的lig化导致峰值电流和特定电容(阳极/阴极曲线之间的面积)显着增加。但是,批处理变化增加到约30%。研究了两种不同的铂电沉积技术,包括电静态和频率调节的电沉积。研究表明,具有高特异性电容和峰值电流的金属级连杆电极的形成可能是以高批量变异性为代价的。文献中尚未讨论此设计权衡,如果需要进行大规模使用的扩展传感器设计,这是一个重要的考虑。该研究的数据集可通过开放访问存储库获得。这项研究为LIG材料特性的变化提供了重要的见解,以扩展LIG传感器的可扩展开发。需要进行其他研究来了解这种变异性的潜在机制,以便可以开发提高重复性的策略来改善质量控制。
长期(大本营,HAB,Art VIII+)3 https://ntrs.nasa.gov/citations/20240003016#:~: text=lunar%20Command%20Command%20AND%20Control%20Control%20Control%20 Interperability%20 Interperability%20(Lucciproject); %20 Overview%20%20LUNAR,COMBLECT%20Partners%2C%20和%20International%20Partners。
标题:使用原子探针断层扫描摘要在材料中看到氢:金属材料中的氢存在可能导致灾难性的早期裂缝,称为氢含糖。观察氢及其在微观结构中相关的影响一直是一个巨大的挑战,它限制了解决该问题的解决方案。为此,我们的研究小组开发了一种特殊的工具,即低温原子探针断层扫描(Cryo-Apt),用于氢图,并将其与微力方法结合使用,以研究钢中的氢化含量。我们的努力为破译钢中的氢气诱捕和拥抱机制提供了新的见解,从而促进了钢微结构的发展,钢微结构具有良好的抵抗力。bio:Yi-Sheng(Eason)Chen博士是Nanyang助理教授(NAP)和新加坡国家研究基金会(NRF)材料科学与工程学院,Nanyang Technological University,新加坡(NTU)。他的研究重点是材料表征,冶金和氢技术。专门使用高级显微镜技术,例如原子探针断层扫描(APT)和电子显微镜来开发高级金属材料的结构属性处理关系。从这些努力中获得的见解将有助于更深入地了解材料行为,为发展下一代高性能材料的发展铺平道路。他是Sinica学术界物理研究所的前研究助理。 参考:[1] Y.-S. Chen等。他是Sinica学术界物理研究所的前研究助理。参考:[1] Y.-S. Chen等。“金属中的氢诱捕和覆盖 - 综述。”国际氢能杂志(印刷中)(2024年)。https://www.sciendirect.com/science/article/pii/s036031992401332 6
# 组成 # 原子核 # 电子 缩写 1 2 Zn +2 Al + [C 3 H 6 ] 10 94 326 2 Zn + 2 Al + PP 2 2 Zn + 2 Al + [ C 10 H 8 O 4 ] 5 114 586 2 Zn + 2 Al + PET 3 2 Zn + 2 Al + [ C 6 H 4 S] 10 114 646 2 Zn + 2 Al + PPS 4 2 Zn + 2 Al + [C 22 H 10 O 5 N 2 ] 2 82 478 2 Zn + 2 Al + PI 5 3 Zn +1 Al + [C 3 H 6 ] 10 94 343 3 Zn + 1 Al + PP 6 3 Zn + 1 Al + [ C 10 H 8 O 4 ] 5 114 603 3 Zn + 1 Al + PET 7 3 Zn + 1 Al + [ C 6 H 4 S] 10 114 663 3 Zn + 1 Al + PPS 8 3 Zn + 1 Al + [C 22 H 10 O 5 N 2 ] 2 82 495 3 Zn + 1 Al + PI
使用MMI Cellcut(一种提供精确的单细胞隔离的高级激光显微解剖(LMD)系统)解锁研究的全部潜力。此功能强大的工具对于精确样本准备至关重要,为您提供了在各个研究领域成功下游实验所需的明确定义的起始材料。样品安装在载玻片和载体膜之间,以确保有效防止污染的无接触式切割过程。体验LMD作为您的基础研究资产的准确性和效率差异。
在这种情况下,了解电池电极的特征(孔,厚度,密度和电导率)至关重要。确保涂层厚度的均匀性可防止电极之间的不均匀响应并降低降解速率。涂层密度必须在能量密度和预期应用必要的功率要求之间取得平衡。此外,涂层电导率可以提高高排放速率的能力,这对于快速释放至关重要。涂层孔隙率直接影响锂离子电池的效率,性能和寿命。测量这些数量的传统方法通常涉及破坏性技术,限制了其适用性,尤其是在理解实时性能或奥塞兰多行为方面。孔隙率评估传统上涉及破坏性方法,例如汞入侵,气体吸附和液体挤出。X射线扫描虽然有效,但由于其使用辐射而引起了安全问题。此外,电化学阻抗光谱法提供了间接的孔隙度测量,但其复杂性可能会限制其应用。
沿海地区碳钢腐蚀的成本很高,从而极大地影响了这些地方的经济。 div>涂料专门在这些条件下提供了良好的钢制保护,为此,新聚合物的持续发展是基本的。 div>在设计抗腐蚀涂料的设计中,已经使用了各种无机添加剂(其中一些具有潜在环境损害的金属)和有机物作为聚合物。 div>据报道,多多素氧化物,赤二酸的共聚物,半乙烯基 - 吡咯酮和聚二烯蛋白的共聚物是抗腐败涂料的成分。 div>这项工作的目的是获得一个电导性聚合物,该聚合物增强了炼金术涂层的保护作用。 div>关键词:抗腐蚀绘画,碳钢腐蚀,电导性聚合物,腐蚀抑制剂。 div>
由于一维线性通道的扩散限制,纳米沸石的合成和催化应用已被证明是提高各种扩散限制烃转化性能的有效策略 [7,8]。由于废物消耗和污染,工业的增长对全球环境构成了严重威胁。应做出更多努力来减少环境污染。解决这一重大问题的有效方法之一是光催化 [9]。尽管许多类型的材料被用于催化,如硫属化物、金属氧化物和钙钛矿 [10,11]。沸石的多孔笼状结构有许多应用,包括气体检测和清洁 [12,13]。沸石可以通过多种方法成功合成,例如盐化、密闭空间合成和微波合成法 [14,15]。已经报道了用微波法制备的纳米级林德 L 型沸石。由于这些金属氧化物和钙钛矿的稳定性较差,研究人员发现沸石是光催化的主要候选材料,因为它的二次氢解程度较低,在正辛烷芳构化中对 C-8 芳烃的选择性较高 [16]。然而,微波合成法被认为耗能,不适合工业应用和技术催化 [17]。因此,开发一种经济高效、易于扩大规模的方法来制备具有改进催化性能的纳米级林德 L 型沸石是极其必要的。幸运的是,一些研究人员观察到加入少量钡可以促进纳米级林德 L 型沸石的形成 [18]。据我们所知,Ba 对林德 L 型结晶过程的影响的解释仍不清楚。全面了解形成过程对于更科学地调节沸石晶体尺寸也具有重要意义。此外,林德 L 型沸石晶体尺寸对正构烷烃芳构化的影响还需要进一步系统研究。Bernard 等人首次报道了非酸性 0.71 nm 一维 12 元环通道的林德 L 型沸石在负载铂的情况下表现出优异的烷烃芳构化性能。通过水热法成功合成了纳米尺寸的林德 L 型沸石[19,20]。林德 L 型沸石具有六方晶体结构(空间群 P-6/mmm),晶胞常数 a = b = 18.4 和 c = 7.5 [21,22]。林德 L 型沸石在过去 20 年中引起了广泛关注